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Abstract

We study multi-agent games within the innovative framework of decision-dependent games, which

establishes a feedback mechanism that population data reacts to agents’ actions and further char-

acterizes the strategic interactions among agents. We focus on finding the Nash equilibrium of

decision-dependent games. However, gradients of reward functions are unknown due to the strate-

gic interactions between agents, and classical gradient-based methods are infeasible. To overcome

this challenge, we model the strategic interactions by a general parametric model and propose a

novel online algorithm, Online Performative Gradient Descent (OPGD), which leverages the ideas

of online stochastic approximation and projected gradient descent to learn the Nash equilibrium

in the context of function approximation for the unknown gradient. In particular, under mild

assumptions on the function classes defined in the parametric model, we prove that the OPGD al-

gorithm finds the Nash equilibrium efficiently for strongly monotone decision-dependent games.

Synthetic numerical experiments validate our theory.

1 Introduction

The classical theory of learning and prediction fundamentally relies on the assumption that data

follows a static distribution. This assumption, however, does not account for many dynamic real-

world scenarios where decisions can influence the data involved. Recent literature on performative

classification (Hardt et al., 2016; Dong et al., 2018; Miller et al., 2020) and performative prediction

(Perdomo et al., 2020) offers a variety of examples where agents are strategic, and data is perfor-

mative. For instance, in the ride-sharing market, both passengers and drivers engage with multiple

platforms using various strategies such as “price shopping”. Consequently, these platforms observe

performative demands, and the pricing policy becomes strategically coupled.

In this paper, we explore the multi-agent performative prediction problem, specifically, the

multi-agent decision-dependent games, as proposed by Narang et al. (2022). We aim to develop

online algorithms to find Nash equilibria with the first-order oracle, and further extend it to the

bandit feedback setting. In this scenario, agents can only access their utility functions instead of

gradients through the oracle. Finding Nash equilibria in decision-dependent games is a challenging
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task. Most existing works primarily focus on finding performative stable equilibria within the single-

agent setting, an approach that approximates the Nash equilibrium and is relatively straightforward

to compute (Mendler-Dünner et al., 2020; Wood et al., 2021; Drusvyatskiy and Xiao, 2022; Brown

et al., 2022; Li and Wai, 2022).

There are two major challenges associated with this problem: (i) the distribution shift induced

by performative data, and (ii) the lack of first-order information for the performative gradient due

to the strategic interaction between agents. To address these two challenges, we propose a novel

online gradient-based algorithm, Online Performative Gradient Descent (OPGD). In particular, our

algorithm employs a general parametric framework to model the decision-dependent distribution,

which provides an unbiased estimator for the unknown gradient, and leverages online stochastic

approximation methods to estimate the parametric functions.

1.1 Major Contributions

Our work provides new fundamental understandings of decision-dependent games. Expanding

upon the linear parametric assumption in Narang et al. (2022), we propose a more comprehensive

parametric framework that models decision-dependent distributions of the observed data. We also

derive sufficient conditions under this parametric framework that guarantee a strongly monotone

decision-dependent game, thereby ensuring a unique Nash equilibrium.

From the algorithmic perspective, we propose OPGD , the first online algorithm to find the Nash

equilibrium under linear and kernel parametric models. While the existing algorithm only handles

the linear case and cannot be extended to the non-linear parametric model (Section 3), and OPGD

uses an essentially different method to learn the strategic interaction between agents. Under the

proposed parametric framework, learning the Nash equilibrium in decision-dependent games can be

formulated as a bilevel problem, where the lower level is learning the strategic model and the upper

level is finding equilibria. We acknowledge this learning framework bridges online optimization and

statistical learning with time-varying models. Besides, the OPGD algorithm leverages the ideas of

online stochastic approximation for the lower problem and projected gradient descent to learn the

Nash equilibrium. Further, we extend OPGD into the bandit feedback setting by the analogous idea.

We further prove that under mild assumptions, OPGD converges to the Nash equilibrium. Given

the first-order oracle, OPGD achieves a convergence rate ofO(t−1) under the linear parametric model.

This rate matches the optimal rate of SGD in the strongly convex setting. For the kernel function

class H that associated with a bounded kernel K, we posit that the parametric functions reside

within the power space Hβ and evaluate the approximation error of OPGD under the α-power norm,

where α represents the minimal value that ensures the power space Hα possesses a bounded kernel.

We present the first analysis for online stochastic approximation under the power norm (Lemma

4.18), in contrast to the classical RKHS norm (Tarres and Yao, 2014; Pillaud-Vivien et al., 2018;

Lei et al., 2021). The difference between the RKHS H and the power space Hβ makes the standard

techniques fail under the power norm, and we use novel proof steps to obtain the estimation error

bound. We demonstrate that OPGD leverages the embedding property of the kernel K to accelerate

convergence and achieves the rate of O(t−
β−α

β−α+2 ). Moreover, OPGD can handle the challenging

scenario, where parametric functions are outside the RKHS. We further extend the analysis into

2



the bandit feedback setting and obtain an analogous convergence rate. See Section 4 for more

details.

1.2 Related Work

Performative prediction. The multi-agent decision-dependent game in this paper is inspired

by the performative prediction framework (Perdomo et al., 2020). This framework builds upon

the pioneering works of strategic classification (Hardt et al., 2016; Dong et al., 2018; Miller et al.,

2020), and extends the classical statistical theory of risk minimization to incorporate the performa-

tivity of data. Perdomo et al. (2020); Mendler-Dünner et al. (2020); Miller et al. (2021) introduce

the concepts of performative optimality and stability, demonstrating that repeated retraining and

stochastic gradient methods converge to the performatively stable point. Miller et al. (2021), in

pursuit of the performatively optimal point, model the decision-dependent distribution using loca-

tion families and propose a two-stage algorithm. Similarly, Izzo et al. (2021) develop algorithms to

estimate the unknown gradient using finite difference methods. More recently, Narang et al. (2022);

Piliouras and Yu (2022) expand the performative prediction to the multi-agent setting, deriving

algorithms to find the performatively optimal point.

Learning in continuous games. Our work aligns closely with optimization in continuous games.

Rosen (1965) lays the groundwork, deriving sufficient conditions for a unique Nash equilibrium in

convex games. For strongly monotone games, Bravo et al. (2018); Mertikopoulos and Zhou (2019);

Lin et al. (2021) achieve the convergence rate and iteration complexity of stochastic and derivative-

free gradient methods. For monotone games, the convergence of such methods is established by

Tatarenko and Kamgarpour (2019, 2020). Additional with bandit feedback settings, zeroth-order

methods (or derivative-free methods) achieve convergence (Bravo et al., 2018; Lin et al., 2021;

Drusvyatskiy et al., 2022; Narang et al., 2022), albeit with slow convergence rates (Shamir, 2013;

Lin et al., 2021; Narang et al., 2022). Relaxing the convex assumption, Ratliff et al. (2016); Agarwal

et al. (2019); Cotter et al. (2019) study non-convex continuous games in various settings.

Learning with kernels. Our proposed algorithm closely relies on stochastic approximation,

utilizing online kernel regression for the RKHS function class. Prior research investigates the

generalization capability of least squares and ridge regression in RKHS De Vito et al. (2005);

Caponnetto and De Vito (2007); Smale and Zhou (2007); Rosasco et al. (2010); Mendelson and

Neeman (2010). Meanwhile, extensive works study algorithms for kernel regression. For instance,

Yao et al. (2007); Dieuleveut and Bach (2016); Pillaud-Vivien et al. (2018); Lin and Rosasco (2017);

Lei et al. (2021) propose offline algorithms with optimal convergence rates under the RKHS norm

and L2 norm using early stopping and stochastic gradient descent methods, while Ying and Pontil

(2008); Tarres and Yao (2014); Dieuleveut and Bach (2016) design online algorithms with optimal

convergence rates. The convergence of kernel regression in power norm (or Sobolev norm) is studied

in Steinwart et al. (2009); Fischer and Steinwart (2020); Liu and Li (2020); Lu et al. (2022),

with offline spectral filter algorithms achieving the statistical optimal rate under the power norm

(Pillaud-Vivien et al., 2018; Blanchard and Mücke, 2018; Lin and Cevher, 2020; Lu et al., 2022).
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Notation. We introduce some useful notation before proceeding. Throughout this paper, we

denote the set 1, 2, · · · , n by [n] for any positive integer n. For two positive sequences {an}n∈N and

{bn}n∈N, we write an = O(bn) or an ≲ bn if there exists a positive constant C such that an ≤ C · bn.
For any integer d, we denote the d-dimensional Euclidean space by Rd, with inner produce ⟨·, ·⟩ and
the induced norm ∥·∥ =

√
⟨·, ·⟩. For a Hilbert space H, let ∥·∥H be the associated Hilbert norm. For

a set X and a probability measure ρX on X , let L2ρX be the L2 space on X induced by the measure

ρX , equipped with inner product ⟨·, ·⟩ρX and L2 norm ∥ · ∥ρX=
√
⟨·, ·⟩ρX . For any matrix A = (aij),

the Frobenius norm and the operator norm (or spectral norm) of A are ∥A∥F = (
∑

i,j a
2
ij)

1/2 and

∥A∥op = σ1(A), where σ1(A) stands for the largest singular value of A. For any square matrix

A = (aij), denote its trace by tr(A) =
∑

i aii. For any y ∈ Rd, we denote its projection onto a set

X ⊂ Rd by projX (y) = argminx∈X ∥x− y∥. The set denoted by NX (x) represents the normal cone

to a convex set X at x ∈ X , namely, NX (x) = {v ∈ Rd : ⟨v, y − x⟩ ≤ 0, ∀y ∈ X}. For any metric

space Z with metric d(·, ·), the symbol P(Z) will denote the set of Radon probability measures µ

on Z with a finite first moment Ez∼µ[d(z, z0)] <∞ for some z0 ∈ Z.

2 Preliminaries and Problem Formulation

We briefly introduce the formulation of n-agent decision-dependent games based on Narang et al.

(2022). In this setting, each agent i ∈ [n] takes the action xi ∈ Xi from an action set Xi ⊂ Rdi .

Define the joint action x := (x1, x2, · · · , xn) ∈ X and the joint action set X = X1 × · · · × Xn ⊂ Rd,

where d :=
∑n

i=1 di. For all i ∈ [n], we write x = (xi, x−i), where x−i denotes the vector of all

coordinates except xi. Let Li : X → R be the utility function of agent i. In the game, each agent

i seeks to solve the problem

min
xi∈Xi

Li(xi, x−i), where Li(x) := E
zi∼Di(x)

ℓi(x, zi). (2.1)

Here zi ∈ Zi represents the data observed by agent i, where the sample space Zi is assumed to be

Zi = Rp with p ∈ N throughout this paper. Moreover, Di : X → P(Zi) is the distribution map,

and ℓi : Rd × Zi → R denotes the loss function. During play, each agent i performs an action xi
and observes performative data zi ∼ Di(x), where the performativity is modeled by the decision-

dependent distribution Di(x). In the round t, the agent i only has access to z1i , · · · , z
t−1
i as well as

x1, · · · , xt−1 and seeks to solve the ERM version of (2.1). We assume the access to the first-order

oracle, namely, loss functions ℓi are known to agents but distribution maps Di are unknown.

Definition 2.1. (Nash equilibrium). In the game (2.1), a joint action x∗ = (x∗1, x
∗
2, · · · , x∗n) is a

Nash equilibrium (Nash Jr, 1996) if all agents play the best response against other agents, namely,

x∗i = argmin
xi∈Xi

Li(xi, x∗−i) = argmin
xi∈Xi

E
zi∼Di(xi,x∗

−i)
ℓi(xi, x

∗
−i, zi), ∀i ∈ [n]. (2.2)

In general continuous games, Nash equilibria may not exist or there might be multiple Nash

equilibria (Fudenberg and Tirole, 1991). The existence and uniqueness of a Nash equilibrium in

a continuous game depend on the game’s structure and property. In general, finding the unique

Nash equilibrium is only possible for convex and strongly monotone games (Debreu, 1952).
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Definition 2.2. (Convex game). Game (2.1) is a convex game if sets Xi are non-empty, compact,

convex and utility functions Li(xi, x−i) are convex in xi when x−i are fixed.

Suppose that utility functions Li are differentiable, we use ∇iLi(x) to denote the gradient of

Li(x) with respect to xi (the i-th individual gradient). We say the game (2.1) is C1-smooth if the

gradient ∇iLi(x) exists and is continuous for all i ∈ [n]. Using this notation, we define the gradient

H(x) comprised of individual gradients

H(x) := (∇1L1(x), · · · ,∇nLn(x)).

Definition 2.3. (Strongly monotone game). For a constant τ ≥ 0, a C1-smooth convex game (2.1)

is called τ -strongly monotone if it satisfies

⟨H(x)−H(x′), x− x′⟩ ≥ τ∥x− x′∥2, for all x, x′ ∈ X .

Note that a τ -strongly monotone game (τ > 0) over a compact and convex action set X admits a

unique Nash equilibrium (Rosen, 1965). According to the optimal conditions in convex optimization

(Boyd et al., 2004), this Nash equilibrium x∗ is characterized by the variational inequality

0 ∈ H(x∗) +NX (x
∗). (2.3)

The agents in the game (2.1) are strategically coupled in two ways. First, the data zi seen

by agents is influenced by the joint action x, since each of them follows a decision-dependent

distribution Di(x). Second, the loss functions ℓi depend on the joint action x and the observed

data zi. Note that the decision-dependence in distributions Di(x) may involve the reaction of

strategic users in a population to the announced joint action x. This interaction structure between

the decision-maker and the strategic users induces a game in the environment, which is known

as a Stackelberg game [Von Stackelberg (2010)]. In the game (2.1), we aggregate the strategic

interaction between strategic agents and strategic users in distributions Di(x).

Next, we use a real-world example of the ride-share market [Hardt et al. (2016); Perdomo et al.

(2020); Narang et al. (2022)] to digest the decision-dependent game (2.1).

Example 2.4. (Revenue Maximization via Demand Forecasting). In the ride-sharing market,

several platforms act as strategic agents (suppose there are n platforms), predicting ride demands

of strategic users in a city to maximize revenue. Typically, both drivers and passengers, regarded as

strategic users, engage with multiple platforms by employing tactics such as ”price shopping”. To

elaborate, users call the ride in multiple platforms, and each platform i presents its price and time

cost (action xi) for users. Strategic users compare prices and time costs among these platforms and

choose the best one. Consequently, the forecasted ride demand zi for platform i, which is generated

by the strategic users, relies on the platform’s own decision xi as well as the choices of competitors

x−i, thereby shaping the distributions zi ∼ Di(x).

Example 2.5. (University Admissions). Multiple universities, acting as strategic agents, evaluate

applications to decide on admissions. Each applicant, considered a strategic user, tailors their

application to meet the criteria of universities. Every university i evaluates numerous applications,
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represented by data zi (might contain GPA and other related grades), and formulates a rule xi
to decide which candidates are admitted. Each university’s goal is to accept qualified students,

and applicants may apply to various universities. To elaborate, students might compare different

programs by assessing their admission rules and selecting several universities that match their

qualifications. Consequently, the predicted applications zi received by the university i are shaped

by the joint rule x, thus formulating the decision-dependent distribution zi ∼ Di(x). Furthermore,

every university assesses the quality of students using a loss function, denoted as ℓi(x, zi), and

subsequently forms a decision-dependent game.

2.1 A Peek into Decision-Dependent Game: Why Challenging?

We briefly talk about the challenges and our idea of designing the algorithm. In decision-dependent

games, the classical theory of risk minimization does not work. [Perdomo et al. (2020); Narang

et al. (2022)] propose the repeated retraining method, or repeated risk minimization algorithm

for the game (2.1). The idea is to decouple the effects of joint action x on loss functions ℓi and

distributions Di(x). This method repeatedly minimizes the utility function with the distribution

map Di fixed at the result of the previous iteration:

xt+1 = argmin
x∈X

E
zi∼Di(xt)

ℓi(x, zi). (2.4)

In each iteration, distribution Di(x
t) is fixed and (2.4) is a regular optimization problem. We can

derive the corresponding repeated gradient descent algorithm

xt+1 = projX

(
xt − η E

zi∼Di(xt)
∇iℓ(x

t, zi)

)
. (2.5)

Repeated retraining is numerically feasible but it fails to find the Nash equilibrium. In fact, the

update rule (2.5) is a biased gradient descent because it only uses the term Pi(x) rather than the

full gradient ∇iLi(x). As a result, this algorithm converges to the so-called performatively stable

equilibrium instead of the Nash equilibrium.

The primary obstacles to finding the Nash equilibrium in the game (2.1) include: (i) the dis-

tribution shift induced by performative data, and (ii) the lack of first-order information for the

performative gradient. To make it clear, standard methods, such as gradient-based algorithms,

necessitate the gradient H(x). However, H(x) is unknown since distributions Di are unknown,

and estimating H(x) is complex due to the dependency between Di(x) and x. Mathematically,

assuming C1-smoothness, the chain rule directly yields the following expression for the gradient

∇iLi(x) = E
zi∼Di(x)

∇iℓi(xi, x−i, zi) +
d

dui
E

zi∼Di(ui,x−i)
ℓi(xi, x−i, zi)

∣∣∣
ui=xi

, (2.6)

where ∇iℓi(x, zi) denotes the gradient of ℓi(x, zi) with respect to xi. The main difficulty is estimat-

ing the second term in (2.6) due to the absence of closed-form expressions.

To estimate the unknown gradient H(x), we impose a parametric assumption on the observed

data zi and model the distribution maps Di using parametric functions. Note that the linear
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parametric assumption was first proposed in Narang et al. (2022). In this paper, we extend this

assumption to a general framework and show that under the parametric assumption, the gradient

H(x) has a closed-form expression, which yields an unbiased estimator for H(x).

Assumption 2.6. (Parametric assumption). Suppose there exists a function class F and p-

dimensional functions fi : X → Rp over the joint action set X such that fi ∈ F p (i.e. each

coordinate of fi is in the function class F ) and

zi ∼ Di(x)⇐⇒ zi = fi(x) + ϵi, ∀i ∈ [n],

where ϵi ∈ Rp are zero-mean noise terms with finite variance σ2, namely, Eϵi = 0 and E∥ϵi∥2 ≤ σ2.

Under Assumption 2.6, assuming that fi are differentiable and letting Pi be the distribu-

tion of the noise term ϵi, we derive the following expression for the utility functions Li(x) =

Ezi∼Di(x)ℓi(x, zi) = Eϵi∼Piℓi(x, fi(x) + ϵi). Then the individual gradient would be ∇iLi(x) =

∇iEzi∼Di(x)ℓi(x, zi) = ∇i[Eϵi∼Piℓi(x, fi(x) + ϵi)]. Consequently, the chain rule directly implies the

following expression

∇iLi(x) = E
zi∼Di(x)

∇iℓi(x, zi) +

(
∂fi(x)

∂xi

)⊤

E
zi∼Di(x)

∇ziℓi(x, zi), (2.7)

where ∇ziℓi(x, zi) denotes the gradient of ℓi(x, zi) with respect to zi. Given a joint action x, each

agent i observes data zi ∼ Di(x). Equation (2.7) suggests the following unbiased estimator for

H(x):

Ĥ(x) :=
(
∇̂iLi(x)

)
i∈[n]

=

(
∇iℓi(x, zi) +

(
∂fi(x)

∂xi

)⊤
∇ziℓi(x, zi)

)
i∈[n]

. (2.8)

However, direct computation of Ĥ(x) is infeasible because fi are unknown. To overcome this

challenge, we approximate the unknown functions fi with the function class F p. In fact, the

estimation of fi can be formed as a non-parametric regression problem, namely,

f̂i = argmin
f∈Fp

∫
X×Zi

∥zi − f(x)∥2dρi, ∀i ∈ [n], (2.9)

where ρi is the joint distribution of (x, zi) induced by x ∼ ρX and zi ∼ Di(x). Here ρX is a

user-specified sampling distribution on X and has full support.

3 The OPGD Algorithm

In this section, we derive gradient-based online algorithms to find the Nash equilibrium in the game

(2.1), namely, the Online Performative Gradient Descent (OPGD). In Section 3.1, we formulate the

problem into bi-level optimization under Assumption 2.6. In Section 3.2, we consider F to be the

linear and kernel function classes and derive the OPGD under first-order oracle. In Section 3.3, we

extend the kernel OPGD into the bandit feedback setting.
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3.1 Bi-Level Formulation

To derive gradient-based algorithms, the first task is to estimate the unknown gradient H(x).

Recalling the unbiased estimator Ĥ(x) defined in (2.8), a natural method is estimating unknown

functions fi and using the estimation to compute the estimator Ĥ(x). In more detail, the estimation

of fi can be formed as a non-parametric regression problem (2.9. In each iteration t, the algorithm

gets a point uti ∼ ρX in the joint action set X following a fixed distribution ρX and draws a sample

yti ∼ Di(u
t
i). Then for any iteration T , {(uki , yki )}k∈[T ] are i.i.d. random variables. One might

minimize the empirical risk of (2.9) as estimations for fi, namely,

f̂i = argmin
f∈Fp

1

T

T∑
k=1

∥yki − f(uki )∥2, ∀i ∈ [n]. (3.1)

Thus, (2.8) and (3.1) together yield an estimator for the gradient:

∇̂iLi(x) := ∇iℓi(x, zi) +

(
∂f̂i(x)

∂xi

)⊤

∇ziℓi(x, zi). (3.2)

In each iteration t, assuming that xt := (xt1, · · · , xtn) is the output of the previous iteration,

OPGD performs the following update for all i ∈ [n]:

(i) (Estimation update). Update the estimation of fi by online stochastic approximation for

(2.9).

(ii) (Individual gradient update). Compute the estimator (2.8) and perform projected gradient

steps

xt+1
i = projXi

(xti − ηt∇̂iLi(xt)), ∀i ∈ [n].

In fact, we formulate the learning of Nash equilibria into a bi-level optimization problem. The

lower-level problem is learning the parametric model, and the upper-level problem is finding the

Nash equilibrium. Moreover, step (i) solves the lower-level problem by stochastic approximation,

and step (ii) solves the upper-level problem by projected gradient descent.

3.2 Learning with First-Order Oracle

In this section, we derive the OPGD for both linear and kernel parametric models given the first-order

oracle. While the linear OPGD performs exactly the same as steps (i) and (ii), the kernel OPGD adds

a dynamic regularization term due to the infinite dimension of RKHS.

Linear Function Class. Let F be the linear function class, namely, fi(x) = Aix for i ∈ [n],

where Ai ∈ Rp×d are unknown matrices. Then (2.9) becomes the least square problem Ai =

argminA∈Rp×d E(ui,yi)∼ρi∥yi − Aiui∥2 with random variables ui ∼ ρX , yi ∼ Di(ui). We use the

gradient of the least square objective ∥yi−Aiui∥2 to derive the online least square update: Anew ←
A−ν(Aui−yi)u⊤i (Dieuleveut et al., 2017; Narang et al., 2022). In each iteration t, we suppose that
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At−1
i is the estimation of Ai from the previous iteration, OPGD samples uti ∼ ρX and yti ∼ Di(u

t
i)

and performs the following estimation update:

(i) At
i = At−1

i − νt
(
At−1

i uti − yti
)
(uti)

⊤. (3.3)

Recalling (2.7), the individual gradient is ∇iLi(x) = Ezi∼Di(x)

[
∇iℓi(x, zi) +A⊤

ii∇ziℓi(x, zi)
]
, where

Aii = ∂fi(x)/∂xi ∈ Rp×di denotes the submatrix of Ai whose columns are indexed by the agent i.

After step (i), OPGD draws a sample zti ∼ Di(x
t) and compute the estimator (2.8) to perform the

projected gradient step:

(ii) xt+1
i = projXi

(
xti − ηt

(
∇iℓi(x

t, zti) + (At
ii)

⊤∇ziℓi(x
t, zti)

))
. (3.4)

Kernel Function Class Now we consider F as the kernel function class, namely, we suppose

fi ∈ (H)p, where H is an RKHS induced by a Mercer kernel K : X × X → R and a user-

specified probability measure ρX . By the reproducing property of H, fi can be represented as

fi(x) = ⟨fi, ϕx⟩H, where ϕ : X → H is the feature map, i.e. ϕx := K(·, x) ∈ H for any x ∈ X .
Therefore, (2.9) becomes the kernel regression argminf∈Fp E(ui,yi)∼ρi∥yi − ⟨f, ϕui⟩H∥2.

The extension of linear OPGD into the non-linear case is nontrivial. The major difficulty in

the RKHS case is that H generally has infinite dimensions, and solving the ERM version of

(3.1) leads to ill-posed solutions. Consequently, we consider the regularized kernel ridge regres-

sion argminf∈Fp E(ui,yi)∼ρi∥yi− ⟨f, ϕui⟩H∥2/2+ λt∥f∥2H. In each iteration t, we suppose that f t−1
i

is the estimation of fi from the previous iteration, the OPGD algorithm samples uti ∼ ρX , yti ∼ Di(u
t
i)

and takes gradient steps on the kernel ridge objective ∥yti − ⟨f, ϕut
i
⟩H∥2/2 + λt∥f∥2H, i.e. it takes

the online kernel ridge update (Tarres and Yao, 2014; Dieuleveut and Bach, 2016):

(i) f ti = f t−1
i − νt

[(
f t−1
i (uti)− yti

)
ϕut

i
+ λtf

t−1
i

]
. (3.5)

Since the kernel ridge regression argminf∈Fp E(ui,yi)∼ρi∥yi − ⟨f, ϕui⟩H∥2/2 + λt∥f∥2H has a biased

solution fi,λt , we let λt shrink to 0 gradually to ensure fi,λt → fi. We remark that the change of

λt will bring drift error fi,λt − fi,λt−1 , which is closely nested with the estimation error f ti − fi. We

choose νt and λt carefully to let fi,λt − fi and f ti − fi,λt converge simultaneously (Theorem 4.18).

We suppose that the kernel K is 2-differentiable, i.e., K ∈ C2(X ,X ). Define ∂iϕ : X → H as the

partial derivative of the feature map ϕ with respect to xi, namely, ∂iϕx = ∂iK(x, ·) = ∂K(x, ·)/∂xi.
Steinwart and Christmann (2008, Lemma 4.34) shows that ∂iϕx exists, continuous and ∂iϕx ∈ H.
By the reproducing property ∂fi(x)/∂xi = ∂⟨fi, ϕx⟩H/∂xi = ⟨fi, ∂iϕx⟩H, the individual gradient

∇iLi(x) has the form ∇iLi(x) = Ezi∼Di(x)[∇iℓi(x, zi) + (⟨fi, ∂iϕx⟩H)⊤∇ziℓi(x, zi)]. After step (i),

OPGD draws a sample zti ∼ Di(x
t) and performs the projected gradient step:

(ii) xt+1
i ← projXi

(
xti − ηt

(
∇iℓi(x

t, zti) + (⟨f ti , ∂iϕxt⟩H)⊤∇ziℓi(x
t, zti)

))
. (3.6)

We remark that the gradient steps ηt, νt and regularization terms λt should be chosen carefully

to ensure convergence (see Theorem 4.19). Specifically, the regularization terms λt must shift to

0 gradually. If λt is a constant, f ti in (3.5) converges to the solution of a regularized kernel ridge
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regression, which is a biased estimator of fi. Thus (3.6) fails to converge because the gradient

estimation has a constant bias. We present the pseudocode of OPGD for the linear setting as

Algorithm 1 and for the RKHS setting as Algorithm 2 in Appendix A.

Comparison with Narang et al. (2022). We clarify the difference between OPGD and the

Adaptive Gradient Method (AGM) proposed in Narang et al. (2022). To elaborate, AGM samples

zti ∼ Di(x
t) at current the action and let agents play again with an injected noise ut to obtain

qti ∼ Di(x
t+ut). The algorithm is based on the fact that E[qti−zti |ut, xt] = Aiu

t, which is not related

to xt. Thus, Ai can be estimated by online least squares. We remark that E[qti − zti |ut, xt] depends
on agents’ actions in the non-linear (RKHS) cases, because E[qti − zti |ut, xt] = fi(x

t+ut)− fi(xt) =
⟨fi, ϕxt+ut−ϕxt⟩H. Thus, the change of action will bring additional error that makes the estimation

fail to converge. In contrast, OPGD lets agents play uti ∼ ρX to explore the action space and learn

the strategic behavior of other agents. OPGD estimates the parametric function by solving the ERM

version of (2.9) using online stochastic approximation (3.3) and (3.5). This learning framework can

be applied to RKHS and potentially beyond that, such as overparameterized neural networks using

the technique of neural tangent kernel (Allen-Zhu et al., 2019).

3.3 Learning in the Bandit Feedback Setting

In this section, we extend the kernel OPGD into the bandit feedback setting, which is common in

the real-world application. Given a joint action x and data zi, we only observe the loss ℓi(x, zi)

without access to the first-order oracle (i.e. the gradient of ℓi is unknown). Therefore, to compute

the performative gradient and conduct the projected gradient steps (3.4) and (3.6), we need to

estimate the unknown gradients ∇iℓi and ∇ziℓi from the observed loss ℓi(x, zi).

To estimate the gradients, we leverage the similar idea of estimating the decision-dependent

distribution Di. Suppose loss functions ℓi are in an RKHS B associated with the feature map φ, we

estimate ℓi by online regression. The reproducibility of the RKHS implies that ∇ℓi = ∇⟨ℓi, φ⟩B =

⟨ℓi, ∂φ⟩B. Thus, in order to obtain an estimation of the gradient, it is enough to estimate the loss

function ℓi.

Assumption 3.1. Suppose there exists a function class B such that ℓi ∈ B for all i ∈ [n]. Specifi-

cally, we assume Zi = Zj for all i, j ∈ [n], and B is an RKHS on Y := X ×Z1 induced by a Mercer

kernel R : Y × Y → R associated with a measure ρY on Y with full support and a feature map

φ : Y → B.

Next, to estimate the loss function ℓi, we consider the following kernel ridge regression. Y.

ℓ̂i = argmin
ℓ∈B

∫
(x,z)∼ρY

(ℓi(x, z)− ⟨φ(x, z), ℓ⟩B)2 + ι∥ℓ∥2B.

We remark that the full support of ρY in Assumption 3.1 is crucial, it ensures that the sampling

distribution ρY is non-degenerate and the sampling strategy can sufficiently explore Y. Intuitively,
the full support assumption implies the noise term ϵi has the full support and we leverage the

noise term to explore. Given this intuition, we solve the ERM version of this ridge regression
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and consider the following online gradient steps. To elaborate, in each iteration t, OPGD samples

uti ∼ ρX , y
t
i ∼ Di(u

t
i) and obtains wt

i as the corresponding loss (i.e. wt
i = ℓi(u

t
i, y

t
i)). Firstly,

OPGD performs the gradient step (3.5) to learn the parametric function fi. Next, suppose that ℓt−1
i

is the estimation of ℓi from the previous iteration, OPGD performs the following estimation update:

ℓti = ℓt−1
i − st

[(
ℓt−1
i (uti, y

t
i)− wt

i

)
φut

i,y
t
i
+ ιtℓ

t−1
i

]
. (3.7)

Here ιt is the dynamic regularization term analogous to λt in (3.5). Given the estimated parametric

model and the estimated loss functions, OPGD performs the following projected gradient step:

xt+1
i ← projXi

(
xti − ηt

(
⟨∇iφ(x

t, zti), ℓ
t
i⟩B + (⟨f ti , ∂iϕxt⟩H)⊤⟨∇ziφ(x

t, zti), ℓ
t
i⟩B
))

. (3.8)

In summary, OPGD performs three gradient steps in each iteration: first updates the estimation of

the parametric function fi, then updates the estimation of the loss function ℓi, finally performs the

projected gradient steps leveraging the estimated loss functions and parametric functions.

4 Theoretical Results

We provide theoretical guarantees for OPGD in both linear and RKHS settings. We first impose

some mild assumptions. Similar assumptions are adopted in Mendler-Dünner et al. (2020); Izzo

et al. (2021); Narang et al. (2022); Cutler et al. (2022).

Assumption 4.1. (τ -strongly monotone). The game (2.1) is τ -strongly monotone.

Assumption 4.2. (Smoothness). H(x) is L-Lipschitz continuous:

H(x1)−H(x2) ≤ L∥x1 − x2∥, ∀x1, x2 ∈ X .

Assumption 4.3. (Lipschitz continuity in z). Define D = D1×D2× · · · ×Dn : X → P(Z), where
Z is the sample space Z = Z1×Z2× · · · ×Zn. For all i ∈ [n], x ∈ X , there exists a constant δ > 0,

E
z∼D(x)

√√√√ n∑
i=1

∥∇ziℓi(x, zi)∥2 ≤ δ.

Assumption 4.4. (Finite variance). There exists a constant ζ > 0,

E
zi∼Di(x)

∥∇i,ziℓi(x, zi)− E
zi∼Di(x)

∇i,ziℓi(x, zi)∥2 ≤ ζ2, ∀i ∈ [n],∀x ∈ X ,

where ∇i,ziℓi denotes the gradient of ℓi(x, zi) with respect to xi and zi.

We remark that Assumption 4.2 is the standard smoothness assumption for the utility functions

Li(x) (Boyd et al., 2004; Nesterov et al., 2018). Since X is a compact set within Rd, Assumption

4.3 holds if ℓi(x, zi) is Lipschitz continuous in zi and the gradient ∇ziℓi(x, zi) is continuous in x,

and Assumption 4.4 holds if ℓi(x, zi) is Lipschitz in x and zi (thus ∇i,ziℓi(x, zi) has a bounded

norm). Assumption 4.4 implies that the variances of ∇iℓi(x, zi) and ∇ziℓi(x, zi) are both bounded

by ζ2 for any x ∈ X and zi ∼ Di(x). Besides, we present sufficient conditions for the game (2.1) to

be strongly monotone.
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Proposition 4.5. (Sufficient conditions for Assumption 4.1). Suppose action sets Xi are com-

pact and convex and loss functions ℓi are C
1-smooth in x, zi. Suppose Assumption 2.6 holds and

parametric functions fi are differentiable in x. If there exist positive constants S,Li, Ri such that

S > 2
√∑n

i=1(LiRi)2 and the following properties hold for all i ∈ [n]:

(i) fi(x) is Li-Lipschitz continuous in x ∈ X .

(ii) The map zi → ∇iℓi(x, zi) is Ri-Lipschitz continuous and the map u→ Ezi∼Di(u,x−i)ℓi(x, zi) is

monotone in u ∈ Xi for any fixed x ∈ X .

(iii) The static game (4.1) is S-strongly monotone for any y ∈ X :

min
xi∈Xi

Lyi (xi, x−i), where Lyi (x) := E
zi∼Di(y)

ℓi(x, zi). (4.1)

Then Assumption 4.1 holds for τ = S − 2
√∑n

i=1(LiRi)2.

We refer the reader to Appendix C.4 for complete proof. Next, we propose the convergence

guarantee given the estimation error of the gradient of the loss function ℓi and the parametric

function fi.

Theorem 4.6. (General convergence guarantee). Suppose that Assumptions 4.1, 4.2, 4.3, and 4.4

hold. Suppose that there is an algorithm outputs ∂f ti and ∇ℓi in iteration t, and performs the

following projected gradient step to find the Nash equilibrium

xt+1
i ← projXi

(
xti − ηt

(
∇iℓ

t
i(x

t, zti) + (∂f ti (x
t)/∂xi)

⊤∇ziℓ
t
i(x

t, zti)
))

, (4.2)

where xt is the output of iteration t− 1 and zti ∼ Di(x
t). Suppose that there exists some positive

constants a1 and a2, such that the estimation error of gradients holds for all x ∈ X , zi ∈ Zi (i ∈ [n])

and each iteration t:

∥∂f ti (x)/∂xi − ∂fi(x)/∂xi∥F ≲ O(t−a1) and ∥∇ℓi(x, zi)−∇ℓti(x, zi)∥ ≲ O(t−a2). (4.3)

For all t ≥ 1, set ηt = (1 + (1 ∧ 2a1 ∧ 2a2))/(τ(t + t0)) where t0 is a positive integer, then the xt

generated by this algorithm satisfies

E∥xt − x∗∥2 ≲ O(t−(1∧2a1∧2a2)).

We refer the reader to Appendix C.1 for complete proof. Intuitively, Theorem 4.6 presents

a general convergence framework for OPGD, where it approximates the loss function ℓi and the

parametric function fi by the linear or kernel function class with polynomial rate.

4.1 Convergence Rate in the Linear Setting

In this section, we derive the convergence rate of the linear OPGD with first-order oracle. We

introduce two assumptions necessary to derive theoretical guarantees for the linear function class.
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Assumption 4.7. (Linear assumption). Suppose that the parametric assumption holds (Assump-

tion 2.6) and fi(x) = Aix for i ∈ [n], where Ai ∈ Rp×d are unknown matrices.

Assumption 4.8. (Sufficiently isotropic). There exists constants l1, l2, R > 0 such that

l1I ⪯ Eu∼ρXuu
⊤, Eu∼ρX ∥u∥

2 ≤ l2, Eu∼ρX

[
∥u∥2uu⊤

]
⪯ REu∼ρXuu

⊤.

Assumption 4.8 has been studied in the literature on online least squares regression (Dieuleveut

et al., 2017; Narang et al., 2022). Essentially, this requires the distribution ρX to be sufficiently

isotropic and non-singular, and it ensures the random variable uti ∼ ρX in the online estimation

update step (3.3) can explore all the ”directions” of Rp. A simple example that satisfies Assumption

4.8 is the uniform distribution ρX = U [0, 1], in which case l1 = l2 = 1/3, R = 3/5.

The next theorem provides the convergence rate of OPGD under the linear setting.

Theorem 4.9. (Convergence in the linear setting). Suppose that Assumptions 4.1, 4.2, 4.3, 4.4,

4.7, and 4.8 hold. Set ηt = 2/(τ(t + t0)), νt = 2/(l1(t + t0)), where t0 is a constant that satisfies

t0 ≥ 2l2R/l
2
1. For all iterations t ≥ 1, the xt generated by the OPGD algorithm in Section 3 for

linear function class satisfies

E∥xt − x∗∥2 ≤(4D1 + 2D2(t0 + 1)τ)(t0 + 2)2/(t0 + 1)2

τ2(t+ t0)
+

(t0 + 1)2∥x1 − x∗∥2

(t+ t0)2
, (4.4)

where D1 and D2 are constants that

D1 := 4ζ2(1+2(M/(t0+1)+sup
i∈[n]
∥Ai∥2F )), D2 := 2δ2M, M :=

2t40
∑n

i=1∥A0
i −Ai∥2F

(t0 + 1)3
+
8nl2σ

2(t0 + 2)2

l21(t0 + 1)2
.

Sketch of the Proof. The proof has three steps. First, we derive estimation error bounds of

(3.3):

Lemma 4.10. (Estimation error). Suppose Assumptions 4.7, 4.8 hold and set νt = 2/(l1(t+ t0)),

where t0 is a constant satisfies t0 ≥ 2l2R/l
2
1. Then the matrix At

i generated by OPGD satisfies

E∥At
i −Ai∥2F ≤

2t40
(t0+1)3

∥A0
i −Ai∥2F + 8l2σ2

l21

(
t0+2
t0+1

)2
t+ t0

. (4.5)

Second, we prove that projected gradient steps (3.4) satisfy the stochastic framework (As-

sumption B.1 in Appendix B.1). In more detail, we derive bias and variance bounds for gradient

estimators Ĥ(x):

(Bias) ∥((At
ii −Aii)

⊤Et∇ziℓi(x
t, zti))i∈[n]∥,

(Variance) Et∥([∇iℓi(x
t, zti)− Et∇iℓi(x

t, zti)] + (At
ii)

⊤[∇ziℓi(x
t, zti)− Et∇ziℓi(x

t, zti)])i∈[n]∥2.

Using Lemma B.2 in Appendix B.1, we derive the following one-step error bound:
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Lemma 4.11. (One-step error). Suppose Assumptions 4.1, 4.2, 4.3, 4.4, and 4.7 hold. Let G =

{Gt}t∈N be the filtration Gt = σ{{xj}j∈[T ] ∪ (uti, y
t
i)} and define Et[·] = E[·|Gt]. For any gradient

steps ηt ≤ τ/(4L2), the xt generated by OPGD satisfies

Et∥xt+1 − x∗∥2 ≤ 1

1 + ηtτ
∥xt − x∗∥2 +

4η2t ζ
2(1 + supi∈[n]∥At

i∥2F )
1 + ηtτ

+
2ηtδ

2 supi∈[n]∥At
i −Ai∥2F

τ(1 + ηtτ)
.

(4.6)

Finally, putting the estimation error and the one-step error bounds together, we have that

E∥xt+1 − x∗∥2 ≤ 1

1 + ηtτ
E∥xt − x∗∥2 + D1η

2
t

1 + ηtτ
+
D2ηt/t

1 + ηtτ
, (4.7)

which further leads to (4.4). See Appendix Sections C.2 and D for the detailed proofs. □
We illustrate the parameters involved in Theorem 4.9: τ is the strongly monotone parameter

of the game (2.1), l1, l2, R are intrinsic parameters describing the isotropy of the distribution ρX
(Assumption 4.8), σ2 is the variance of the noise term ϵi defined in Assumption 2.6, ζ and δ

describe the continuity of ℓi (Assumption 4.3, 4.4), t0 is a sufficiently large value, A0
i is the initial

estimation of Ai, x
1 is the initial input. Theorem 4.9 is a combination of Lemma 4.10 and Lemma

4.11, where Lemma 4.10 is the statistical error of the online approximation step (3.3) and Lemma

4.11 is the one-step optimization error of the projected gradient step (3.4). Theorem 4.9 implies

the convergence rate of OPGD in the linear setting is O(t−1), which matches the optimal rate of

stochastic gradient descent in the strongly-convex setting.

4.2 Convergence Rate in the RKHS Setting

In this section, we derive the convergence rate of the kernel OPGD with first-order oracle. Suppose

that K : X × X → R is a continuous Mercer kernel and ρX has full support. Define the integral

operator LK : L2ρX → H by the integral transformation:

LK(f)(x) :=

∫
X
K(x, t)f(t)dρX (t), ∀f ∈ H, ∀x ∈ X .

By Mercer’s theorem, K has the spectral representation K =
∑∞

i=1 µiei ⊗ ei, where ⊗ denotes the

tensor product, {µi}∞i=1 are eigenvalues and {ei}∞i=1 are eigenfunctions with respect to the operator

LK . Moreover, {ei}∞i=1 is an orthogonal basis of L2ρX and {µ1/2i ei}∞i=1 is the orthogonal basis of H,
which induces the representation H = {

∑∞
i=1 aiµ

1/2
i ei : {ai}∞i=1 ∈ ℓ2}.

Definition 4.12. (Power space). For a constant α ≥ 0, the α-power space of an RKHS H is

defined by

Hα =

{ ∞∑
i=1

aiµ
α/2
i ei : {ai}∞i=1 ∈ ℓ2

}
,

equipped with the α-power norm ∥·∥α and inner product ⟨·, ·⟩α, where ∥
∑∞

i=1 aiµ
α/2
i ei∥α :=

(∑∞
i=1 a

2
i

)1/2
and ⟨

∑∞
i=1 aiµ

α/2
i ei,

∑∞
i=1 biµ

α/2
i ei⟩α =

∑∞
i=1 aibi.
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We remark that: (i) H1 = H and Hα ⊂ Hβ for any α > β, (ii) ∥·∥1 = ∥·∥H and ∥·∥0 = ∥·∥ρX ,
and (iii) Hα is an RKHS on X with kernel Kα :=

∑∞
i=1 µ

α
i ei⊗ ei and measure ρX . We review more

properties of RKHS and power spaces in Appendix Sections B.2 and B.3.

We present assumptions on the kernel function class, similar assumptions can be found in

the literature on kernel regression and stochastic approximation (Caponnetto and De Vito, 2007;

Steinwart et al., 2009; Dicker et al., 2017; Pillaud-Vivien et al., 2018; Fischer and Steinwart, 2020).

Assumption 4.13. (Source condition). Suppose Assumption 2.6 holds and there exists an RKHS,

H, with a bounded differentiable Mercer kernel,K, and constants β, κ > 0 such that supx∈X K(x, x) ≤
κ2 and fi ∈

(
Hβ
)p

for all i ∈ [n].

Assumption 4.14. (Embedding property). There exist constants α ∈ (0, 1], A > 0 such that

Kα(x, x) =
∑∞

i=1 µ
α
i e

2
i (x) ≤ A2, for all x ∈ X .

Assumption 4.15. (Lipschitz kernel). Suppose Assumption 4.14 holds and there exists ξ > 0

such that ∥∂iϕαx∥α ≤ ξ for any i ∈ [n] and x ∈ X , where ϕαx : X → Hα is the feature map of the

kernel Kα.

Assumption 4.13 holds when K is bounded, differentiable, and each coordinate of parametric

functions fi lies in the power space Hβ. When β < 1, Assumption 4.13 includes the challenging

scenario, namely, fi /∈ (H)p. Assumption 4.14 holds if there exists a power space Hα such that

the kernel Kα is bounded. Thus, Assumption 4.14 holds with α = 1 for any bounded kernel K.

We further propose Proposition 4.16 as sufficient conditions for the embedding property following

Mendelson and Neeman (2010). Recalling the definition of partial derivative ∂iϕ
α : X → Hα

(Section 3), Assumption 4.15 holds if ∂i∂i+dK
α(x, x) = ∥∂iϕαx∥2α ≤ ξ2 for any x ∈ X , i.e. it holds

for any Lipschitz kernel Kα.

Proposition 4.16. (Sufficient conditions for Assumption 4.14) Suppose there exist constants

C,D, p > 0 and q ∈ (0, 1) such that

sup
i∈N

µpi ∥ei∥∞ ≤ C and µi ≤ Di−1/q,

where ∥·∥∞ denotes the L∞ norm. Then Assumption 4.14 holds for any α > 2p+ q.

Proposition 4.16 follows from the inequality: supx∈X K
α(x, x) = supx∈X

∑∞
i=1(µ

p
i ei(x))

2µα−2p
i ≤

C2Dα−2p
∑∞

i=1 i
−(α−2p)/q <∞. Now we present an example that satisfies these assumptions.

Example 4.17. (Splines on the Circle). Let X = [0, 1] associated with the measure U [0, 1].
For any m ∈ N, let H be the collection of all zero-mean periodic functions f on [0, 1] of the

form f : t→
√
2
∑∞

i=1 ai(f) cos(2πit) +
√
2
∑∞

i=1 bi(f) sin(2πit), associated with the norm ∥f∥2H =∑∞
i=1(ai(f)

2+bi(f)
2)(2πi)2m and the inner product ⟨f, g⟩H =

∑∞
i=1(2πi)

2m(ai(f)ai(g)+bi(f)bi(g)).

Following Wahba (1990), H is an RKHS with the kernel Rm(x, y):

Rm(x, y) =
∞∑
i=1

2

(2πi)2m
cos(2πi(x− y)) = (−1)m−1

(2m)!
B2m({x− y}),
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where B2m(·) denotes the 2m-th Bernoulli polynomial and {x− y} is the fractional part of x− y.
It is easy to check that (

√
2 cos(2πix),

√
2 sin(2πix))i∈N are eigenfunctions with eigenvalues µi =

(2πi)−2m (Dieuleveut and Bach, 2016). Thus, Proposition 4.16 holds for any p > 0 and q ≥ 1/(2m)

because the eigenfunctions are uniformly bounded and eigenvalues µi ∼ i−2m, which implies that

Assumption 4.14 holds for any α > 1/(2m). Moreover, for any k ∈ N, let each coordinate of the

parametric function fi(x) be Bk(x), then Assumption 4.13 holds for β = (2k − 1)/(2m) because

Bk(x) = −2k!
∑∞

i=1
cos(2πix−kπ/2)

(2πi)k
(Abramowitz et al., 1988). For any m > 1, the kernel R2m(x, y)

is bounded and differentiable, thus Assumption 4.15 holds.

We then provide the convergence of the proposed algorithm under the RKHS setting. Specifi-

cally, we present the guarantees for the online estimation error (Lemma 4.18) as well as the rate of

convergence to the Nash equilibrium (Theorem 4.19).

Lemma 4.18. (Estimation error of f ti ). Suppose Assumption 4.13 holds for some β ∈ (0, 2],

Assumptions 4.14, 4.15 hold for some α ∈ (0, 1] and α < β. For all iterations t and positive

constant a, define t = t + t0, where t0 is a constant satisfies t0 ≥ (aκ2 + 1)2. For a constant

γ ∈ [α, β) and γ ≤ 1, set the gradient steps and regularization terms as

νt = a

(
1

t

)β−γ+1
β−γ+2

, λt =
1

a

(
1

t

) 1
β−γ+2

.

If a <
√
(β − γ + 2)/(β − γ)(t0 + 1)/(t0 + 2)κγ−2A−1, the f ti generated by OPGD (Algorithm 2)

with input kernel K satisfies

E∥f ti − fi∥2γ ≲ O(t−
β−γ

β−γ+2 ). (4.8)

We refer the reader to Appendix E.1 for the complete proof. Lemma 4.18 presents the error

bound of online stochastic approximation (3.5) under the power norm ∥·∥γ . Our result includes the

classical theory under the RKHS norm ∥·∥H and extends it on a continuous scale. In more detail, for

any γ ∈ [α, β) and γ ≤ 1, Lemma 4.18 describes how to choose the step-sizes νt and regularization

term λt properly to insure convergence under ∥·∥γ with the convergence rate O(t−(β−γ)/(β−γ+2)).

For β > 1 and γ = 1, this rate would be O(t−(β−1)/(β+1)) and matches the optimal rate under

the RKHS norm Ying and Pontil (2008); Tarres and Yao (2014). If the embedding property

(Assumption 4.14) holds for some α < 1, we choose γ = α to achieve a faster rateO(t−(β−α)/(β−α+2))

(which further leads to Theorem 4.19). Besides, while classical theory assumes Assumption 4.13

holds for β > 1 (i.e. fi ∈ (Hβ)p ⊂ (H)p), our result relaxes this assumption to β > α and

allows β ≤ 1. Intuitively, this implies that the online stochastic approximation can address the

misspecification case fi /∈ (H)p if α < 1.

Here we briefly talk about the technical challenges to obtain the power norm bound. Intuitively,

the main challenge to derive power norm bounds for iteration (3.5) (i.e. ft) under the norm ∥·∥γ
arises from the differing properties between the power space Hγ and the RKHS H. To elaborate,

the standard method to derive error bounds under ∥·∥H decomposes the error f ti − fi by the

operator I − νt(Lt + λtI) where Lt := ϕ∗tϕt (refer to (E.2)), and the analysis is based on the

fact that I − νt(Lt + λtI) is a contraction map on H. This is because the sampling operator
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Lt is compact, self-adjoint, and positive-semidefinite on H, thus, the spectral theorem implies

∥I−νt(Lt+λtI)∥H→H ≤ 1−νkλk where ∥·∥H→H denotes the spectral norm. However, this operator

does not exhibit the same behavior on the power space Hγ . By the definition that Lt = ϕ∗tϕt, for

any h1, h2 ∈ Hγ , we have Lt(hi) = hi(x
t)ϕt = ⟨hi, ϕγt ⟩γϕt and ⟨Lth1, h2⟩γ ̸= ⟨h1, Lth2⟩γ (here we

lift the domain of Lt from H to Hγ). Thus, Lt is not self-adjoint or positive-definite on Hγ and the

spectral norm ∥I − νt(Lt + λtI)∥Hγ→Hγ might larger than 1.

To overcome the aforementioned difficulty, we propose a series of novel proof steps. The main

technical innovation is that our analysis decouples power norm bounds by RKHS norm by consider-

ing semi-population iteration and recursive decomposition, such methods can be applied to derive

power norm bounds for other online algorithms (refer to ”Technical contributions” paragraph in

Appendix E.1 to a detail explanation for our innovation).

Theorem 4.19. (Convergence in the RKHS setting). Suppose that Assumptions 4.1, 4.2, 4.3,

4.4 hold, Assumption 4.13 holds for some β ∈ (0, 2], and Assumptions 4.14, 4.15 hold for some

α ∈ (0, 1] and α < β. For all iterations t ≥ 1 and positive constant a, define t = t+ t0, where t0 is

a constant that satisfies t0 ≥ (aκ2 + 1)2. Set the gradient steps and regularization terms as

ηt = (τt)−1, νt = a · t−
β−α+1
β−α+2 , λt = a−1 · t−

1
β−α+2 .

If a <
√

(β − α+ 2)/(β − α)(t0 + 1)/(t0 + 2)κα−2A−1, the xt generated by the OPGD algorithm in

Section 3 using kernel K for online estimation steps (3.5) and projected gradient steps (3.6) satisfies

E∥xt − x∗∥2 ≲ O(t−
β−α

β−α+2 ). (4.9)

The proof strategy for Theorem 4.19 is similar to that of Theorem 4.9, namely, we derive the

estimation error (setting γ = α in Lemma 4.18) as well as the one-step error (Lemma C.1) and

combine them to obtain the result. We refer readers to Appendix C.3 for the complete proof of

these results.

We demonstrate the parameters involved in Theorem 4.19. Parameters α, β, κ, τ, A are in-

trinsic: β, κ,A are determined by source condition (Assumption 4.13), α is determined by em-

bedding property (Assumption 4.14), and τ is the strongly monotone parameter. Parameters

a, t0 are user-specified: t0 is a sufficiently large value, a is characterized by the inequality a <√
(β − α+ 2)/(β − α)(t0+1)/(t0+2)κα−2A−1 when t0 is determined, a smaller a leads to a larger

constant term in (4.9).

Theorem 4.19 implies that OPGD leverages the embedding property (Assumption 4.14) to obtain

better convergence rates. For any bounded kernel, Assumption 4.14 holds for α = 1, thus Theorem

4.19 guarantees the rate O(t−
β−1
β+1 ). Moreover, suppose that the kernel satisfies some good embed-

ding property, that is, α < 1, since larger β − α leads to faster convergence rates. In that case,

we obtain a better rate O(t−
β−α

β−α+2 ) by setting the gradient steps and regularization terms νt, λt
corresponding to α, β. Besides, OPGD can handle the challenging scenario (fi /∈ (H)p if β < 1) when

the embedding property of kernel holds for α < β. Furthermore, one could extend Theorem 4.19

to the situation where β − α ≥ 2, using the same proof steps, but the convergence rate will fix at

O(t−1/2), this saturation phenomenon has been studied in Dieuleveut and Bach (2016); Lin and

Cevher (2020); Li et al. (2023).
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4.3 Convergence rate in the bandit feedback setting

In this section, we derive the convergence rate of the kernel OPGD in the bandit feedback setting.

Compared with learning under the first-order oracle, the OPGD performs the additional gradient

step (3.7) to estimate the unknown loss function ℓi leveraging a kernel function class B. Suppose

B is an RKHS associated with a continuous Mercer kernel R : Y × Y → R and a measure ρY (has

the full support). Therefore, it is sufficient to derive the estimation error ℓti− ℓi, and the remaining

steps would be analogous to Section 4.2.

For simplicity, we consider ℓti − ℓi with respect to the RKHS norm ∥·∥B instead of the power

norm, and present the following assumption on the kernel function class B, which is similar to

Assumptions 4.13, 4.14, 4.15 for the kernel function class H and its power space. We remark

that Assumption 4.20 is analogous Assumptions 4.13,4.14,4.15, where β corresponds to β′, κ = A

corresponds to κ′, α = 1, and ξ′ corresponds to ξ. The embedding property is included in the

source condition since R is assumed to be a bounded kernel (supy∈Y R(y, y) ≤ κ′
2).

Assumption 4.20. (Assumptions on kernel).

1. (Source condition). Suppose Assumption 3.1 holds and there exists an RKHS, B, with a

bounded differentiable Mercer kernel, R, and constants β′ > 1, κ′ > 0 such that supy∈Y R(y, y) ≤
κ′2 and ℓi ∈ Bβ

′
for all i ∈ [n].

2. (Lipschitz kernel). There exists ξ′ > 0 such that ∥∂iφy∥B ≤ ξ′ for any i ∈ [n] and y ∈ Y,
where φy : X → B is the feature map of the kernel R.

Now we derive the convergence of the kernel OPGD in the bandit feedback setting. As aforemen-

tioned, the key step would be bounding the estimation error ∥ℓti − ℓi∥B.

Lemma 4.21. (Estimation error of ℓti). Suppose Assumption 4.20 holds. For all iterations t and

positive constant a, define t = t + t0, where t0 is a constant satisfies t0 ≥ (aκ′2 + 1)2. Set the

gradient steps and regularization terms as

st = a

(
1

t

) β′
β′+1

, ιt =
1

a

(
1

t

) 1
β′+1

.

If a <
√
(β′ + 1)/β′ · (t0 +1)/(t0 +2) · κ′−2, the ℓti generated by OPGD using the gradient step (3.7)

and kernel R satisfies

E∥ℓti − ℓi∥2B ≲ O(t−
β′−1
β′+1 ). (4.10)

Lemma 4.10 is a direct corollary of Lemma 4.18. In fact, the proofs are the same if we set β = β′,

α = γ = 1, and κ = κ′. Next, we combine the estimation error ℓti − ℓi (Lemma 4.21) and f ti − fi
(Lemma 4.18) to derive the convergence result.

Theorem 4.22. (Convergence in the bandit feedback setting). Suppose the assumptions in The-

orem 4.19 and Lemma 4.21 hold. For all iterations t ≥ 1 and positive constant a, define t = t+ t0,

18



where t0 is a constant that satisfies t0 ≥ (aκ2 + 1)2 ∨ (aκ′2 + 1)2. Set the gradient steps and

regularization terms as

ηt = (τt)−1, νt = a · t−
β−α+1
β−α+2 , λt = a−1 · t−

1
β−α+2 , st = a · t−

β′
β′+1 , ιt = a−1 · t−

1
β′+1 .

If a < (t0+1)/(t0+2) ·
(√

(β − α+ 2)/(β − α)κα−2A−1
)
∧
(√

(β′ + 1)/β′ · κ′−2
)
, the xt generated

by the OPGD algorithm in Section 3 leveraging online estimation steps (3.5), (3.8) (use kernels K

and R) and projected gradient steps (3.6) satisfies

E∥xt − x∗∥2 ≲ O
(
t
−
(

β−α
β−α+2

)
∧
(

β′−1
β′+1

))
. (4.11)

Given Lemma 4.18 and Lemma 4.21, Theorem 4.22 is a corollary of Theorem 4.6. We re-

mark that the parameter t0 is a sufficiently large value, a is a sufficiently small value, and other

parameters are determined in the assumptions involved in the statement. The convergence rate

O(t−( β−α
β−α+2

)∧(β
′−1

β′+1
)
) is the minimum of the estimation errors E∥f ti − fi∥2γ and E∥ℓti − ℓi∥2B. Since

( β−α
β−α+2)∧(

β′−1
β′+1) =

(β−α)∧(β′−1)
(β−α)∧(β′−1)+2 , (4.11) implies the convergence rate of OPGD is mostly determined

by the regularity of the loss function ℓi and the parametric function fi, namely, a larger β − α or

β′ − 1 might leads to a faster convergence rate.

5 Numerical Experiments

In this section, we conduct experiments on multi-agent decision-dependent games in both the linear

and the RKHS settings to verify our theory. All experiments are conducted with Python on a laptop

using 14 threads of a 12th Gen Intel(R) Core(TM) i7-12700H CPU.

5.1 Convergence Rate Analysis

Basic Setup. We consider two-agent decision-dependent games with 1-dimensional actions. Namely,

for all i ∈ [2], define the game

min
x∈X
Li(x), where Li(x) := E

zi∼Di(x)
ℓi(x, zi), (5.1)

where X = [0, 1]× [0, 1], x ∈ X , zi ∈ R, and ℓi(x, zi) is the loss function to be determined. Let the

distribution map be Di(x) ∼ N (fi(x), 0.2), where fi is the parametric function determined by the

specific function class. Then the game (5.1) follows the parametric assumption (Assumption 2.6)

with zi = fi(x) + ϵi, where ϵi ∼ N (0, 0.2) the independent Gaussian noise term.

Linear parametric model. Let the loss function be ℓi(x, zi) = −zi + x2i and set the linear

parametric function as f1(x) = x1 and f2(x) = 2x2, namely, the parametric model is zi = Aix+ ϵi
where A1 = [1 0] and A2 = [0 2]. The the game (5.1) has the gradient H(x) = (2x1 − 1, 2x2 − 2),

therefore, the game (5.1) is convex, C1-smooth, 1-strongly monotone and the Nash equilibrium is

x∗ = (1/2, 1). We conduct a simulation based on this model to check the convergence rate. We
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(a) (b)

Figure 1: (a) Linear setting: The X-axis represents the iteration from 1 to 10, 000, while the

Y-axis represents the norm-squared error of xt to the Nash equilibrium x∗ = (1/2, 1), averaged

over 20 random seeds. Both axes are on a log scale. The blue solid line represents the output

of OPGD and the orange dashed line represents the theoretical rate O(t−1). (b) RKHS setting:

The X-axis represents the iteration from 1 to 10, 000, while the Y-axis represents the norm-squared

error to the Nash equilibrium x∗ = (1/2, 1/2), averaged over 400 random seeds. Both axes are on a

log scale. The blue solid line represents the output of OPGD and the orange dashed line represents

the theoretical rate O(t−1/2).

set the sampling distribution as ρX = U [0, 1]× U [0, 1], the initial point as x0 ∼ ρX , and the initial

estimation as zero. Moreover, letting t0 = 10, we set the gradient step sizes as ηt = 6/(t+ t0), νt =

6/(t+ t0).

Kernel parametric model. Following Example 4.17, we set X = [0, 1] × [0, 1], ρX = U [0, 1] ×
U [0, 1], and define the kernel Q((x1, x2), (y1, y2)) = K(x1, y1) · K(x2, y2) as the product kernel of

K(x, y) = 40B4({x−y}) (i.e. K(x, y) = 960R2m(x, y) where m = 2). Suppose that H is the RKHS

on X induced by the kernel Q and the distribution ρX . Set the parametric function as the product of

two 3-order Bernoulli polynomials, namely, f(x1, x2) = B3(x1) ·B3(x2) = (x31−3x21/2+x1/2) ·(x32−
3x22/2+x2/2). Since cos(2πix) and sin(2πix) are eigenfunctions of the kernel K for i ∈ N+, by the

property of product kernel, sin(2πix1) sin(2πjx2), cos(2πix1) sin(2πjx2), cos(2πix1) cos(2πjx2) are

eigenfunctions of the kernelQ for all i, j ∈ N+. Therefore, we set ℓi(x, zi) = −zi+cos(2πx1) cos(2πx2)−
xi + x2i and let fi(x) = cos(2πx1) cos(2πx2) for i ∈ [2]. Then the gradient of this game is

H(x) = (2x1 − 1, 2x2 − 1), thus, this game is convex, C1-smooth, 1-strongly monotone and the

Nash equilibrium is x∗ = (0.5, 0.5).

Following Example 4.17, Assumption 4.13, 4.14, 4.15 hold for any β > 1 and any α > 1/4.

Set t0 = 10 and a = 7, we set the gradient step sizes as ηt = 6/(t + t0), νt = a/(t + t0)
3/4, λt =

1/(a(t + t0)
1/4) (because (β − α) ∧ 2 = 2, which corresponds to (β − α + 1)/(β − α + 2) = 3/4).

Thus, following Theorem 4.19, the convergence rate is O(t−1/2).
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(a) (b)

Figure 2: (a) Linear setting: Comparison of Linear OPGD averaged by 400 seeds (blue), AGM

averaged by 20 seeds (orange), and RSGM averaged by 20 seeds (red) in the proposed linear model.

The Y-axe takes the log scale. (b) RKHS setting: Comparison of Kernel OPGD averaged by 400

seeds (green), Linear OPGD averaged by 20 seeds (blue), AGM averaged by 20 seeds (orange) in the

proposed non-linear model. The Y-axe takes the log scale.

Results. We perform experiments for both parametric settings to verify the convergence rates

and compare the theoretical and simulated rates, as shown in Figure 1. Since both X and Y axes

take the log scale in Figure 1, the slopes of these lines denote the convergence rates. Figure 1(a)

shows the converge rate of the linear setting within 10, 000 iterations, the simulated rate matches

our prediction, i.e. it is close to O(t−1). Figure 1(b) shows the convergence rate of the RKHS

setting within 10, 000 iterations, it implies that the simulated rate is close to the theoretical rate

O(t−1/2) when the iteration t is larger than 1, 000. These results validate Theorems 4.9 and 4.19.

5.2 Comparison with Baseline Algorithms

In this section, we compare the performance of Linear OPGD (Algorithm 1), Kernel OPGD (Algo-

rithm 2), AGM (Algorithm 1 in Narang et al. (2022)), and the baseline algorithm in performative

prediction RSGM (Section 4.3, Repeated Stochastic Gradient Method in Narang et al. (2022)).

Figure 2(a) compares the performance of the linear OPGD , adaptive gradient methods (AGM),

and Repeated Stochastic Gradient Method (RSGM) on the two-player decision-dependent game

with the linear parametric model as previously described. Letting t0 = 10, for AGM, we set the

injective noise as N (0, 0.32), and the gradient steps are the same as linear OPGD . For RSGM, we

set the gradient steps as ηt = 5/(t + t0). Figure 2(a) shows that for the decision-dependent game

with linear parametric function, linear OPGD and AGM converge to the Nash equilibrium (1/2, 1)

with the same rate O(1/t), while RSGM fails to find the Nash equilibrium. This is because RSGM

only uses the term ∇iℓi(x, zi) of the performative gradient (2.6) for gradient descent, and ignores

the dependence between the distribution Di, consequently, it cannot characterize the decision-

dependent distribution.

21



Figure 2(b) compares the performance of the Kernel OPGD , the linear OPGD , and AGM on

the game with the aforementioned non-linear parametric model. We set the gradient steps of

linear OPGD and AGM as ηt = 4/(t + t0), νt = 4/(t + t0) where t0 = 10, and set the injective

noise of AGM as N (0, 0.32). The gradient steps and regularization terms of the kernel OPGD are

ηt = 6/(t+ t0), νt = 7/(t+ t0)
3/4, λt = 7/(t+ t0)

1/4. Figure 2(b) shows that for proposed the non-

linear parametric function, the kernel OPGD converges to the Nash equilibrium (1/2, 1/2), while

both the linear OPGD and AGM fail to find the NE. In fact, the linear OPGD and AGM approximate

the parametric function by linear models and have large estimation errors, thus, the estimated

performative gradient (2.8) has a constant bias and makes the projected gradient descent fails to

converge.

5.3 Semi-Synthetic Simulation: Revenue Maximization

In this section, we conduct a semi-synthetic simulation for revenue maximization of the rideshare

market (Example 2.4). We study the rideshare market in Boston from November 26, 2018, to

December 18, 2018. To elaborate, we consider a multi-agent decision-dependent game, where the

strategic agents are Uber and Lyft. 1 We perform both linear OPGD and kernel OPGD on this game

and calculate the corresponding revenue.

Game construction. We set up the decision-dependent game analogous to Example 2.4. In more

detail, we consider a ride-share market with two companies as strategic agents. Each company i

sets the price xi ∈ R and seeks to maximize its revenue zixi, where zi ∈ R is the demand generated

by the strategic users. We remark that the demand zi is decision-dependent because users compare

the prices xi among all the companies. Suppose that company i’s loss function ℓi is defined by

ℓi(x, zi) = −zixi + λix
2
i ,

where λi ≥ 0 is the some regularization parameter and x = (xi)i∈[n] is the joint action that

represents the prices of all the companies. Intuitively, this loss function is the negative revenue plus

some regularization term to ensure the game is strongly monotone. Next, we learn the decision-

dependent distributions Di from the aforementioned dataset of the rideshare market in Boston. To

elaborate, this dataset contains the prices for 72 different routes of Uber and Lyft. Consequently,

there are two strategic users and we use the record for the route starting from Back Bay and ending

at Boston University to learn Di for all i ∈ [2].

We model these decision-dependent distributions following the parametric assumption, namely,

zi = fi(x) + ϵi, where fi is the unknown parametric function and ϵi ∼ N (0, 10) is the independent

Gaussian noise. We remark the prices in this dataset are rounded to one decimal place, specifically

to the nearest .5. Thus, we count the number of prices from 5 to 25 and approximate the parametric

function fi by the period kernel (Example 4.17) using kernel ridge regression. Note that here we

fit a non-linear parametric model, which is more flexible. Specifically, we set X = [0, 1] × [0, 1],

1The data used in this paper is publicly available (https://www.kaggle.com/datasets/brllrb/

uber-and-lyft-dataset-boston-ma).
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(a) (b) (c)

Figure 3: (a) Linear OPGD: Revenue corresponds with the Nash equilibrium (10.610581, 7.802483)

obtained by the linear OPGD, where the revenue of Lyft is 1251.447 and of Uber is 2556.880. (b)

Kernel OPGD: Revenue corresponds with the Nash equilibrium (10.776331, 15.376748) obtained by

the kernel OPGD, where the revenue of Lyft is 2208.374 and of Uber is 14512.855. (c) Social costs:

Social costs for Lyft and Uber (i.e. the sum of loss functions for these two agents) obtained by the

linear and kernel OPGD, the social cost for the linear case is −2073.695 and for the kernel case is

−13195.492.

ρX = U [0, 1]×U [0, 1], and the kernel as Q((x1, x2), (y1, y2)) = K(x1, y1)·K(x2, y2), where K(x, y) =

65B4({x − y}). We use outputs of this kernel regression, which are estimations for f1 and f2, to

generate the demand zi synthetically for OPGD.

Revenue and social cost. We use the linear OPGD and kernel OPGD for the aforementioned

two-agent decision-dependent game to find the Nash equilibrium. For the linear OPGD , we set

gradient step sizes as t0 = 1e5, ηt = 0.5/(t + t0), and νt = 0.5/(t + t0). For the kernel OPGD , we

set the gradient step and regularization terms as t0 = 2e5, ηt = 0.1/(t + t0), νt = 7/(t + t0)
3/4,

and λt = 1/(7(t+ t0)
1/4). We run the linear OPGD for 10 different seeds with 10000 iterations and

compute the average as the Nash equilibrium, similarly, we run the kernel OPGD for 10 different

seeds with 10000 iterations and take the average. The results show that the linear OPGD converges to

(10.610581, 7.802483) and the kernel OPGD converges to (10.776331, 15.376748). Next, we calculate

the loss functions Li for both Uber and Lyft as well as their revenue. Moreover, to evaluate the

efficiency of the Nash equilibrium, we compute the social cost for each equilibrium, which is defined

as the sum of all the agents’ individual rewards:

S(x) :=
2∑

i=1

Li(x).

We use the aforementioned estimated decision-dependent distribution Di to calculate the revenue

as well as social cost for the Nash equilibria obtained by the linear OPGD and the kernel OPGD .

Figure 3(a) presents the revenue for both Lyft and Uber corresponding with the Nash equilibrium
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(10.610581, 7.802483) calculated by the linear OPGD and Figure 3(b) presents the revenue for these

companies obtained by the kernel OPGD. These plots show that for both the linear and non-linear

methods, Uber has a larger revenue compared with Lyft, especially for the Nash equilibrium ob-

tained by the kernel OPGD. Moreover, Figure 3(c) presents the social costs for the equilibria obtained

by both the linear and kernel OPGD, it shows that the social cost obtain by the kernel algorithm

is much smaller than the linear algorithm, which further implies that the equilibrium obtained by

the kernel OPGD has better social efficiency.

6 Conclusion and Discussion

In this paper, we study the problem of learning Nash equilibria in multi-agent decision-dependent

games. We propose a parametric assumption to handle the distribution shift and develop a novel

online algorithm OPGD in both the linear and RKHS settings. We derive sufficient conditions to

ensure the decision-dependent game is strongly monotone under the parametric assumption. Given

the first-order oracle, we show that OPGD converges to the Nash equilibrium at a rate of O(t−1) in

the linear setting and O(t−
β−α

β−α+2 ) in the RKHS setting. We further extend the algorithm into the

bandit feedback setting and derive the corresponding convergence rate.
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A Pseudocode

Algorithm 1: OPGD in the Linear setting

Input: Initial x1, initial A0
i = 0, step sizes of GD {ηt}t∈N, step sizes of stochastic

approximation {νt}t∈N, sampling distribution ρX
1 for t ∈ N do

2 for i ∈ [n] do

3 1. Random sampling: Draw sample uti ∼ ρX ;
4 2. Query the environment: Draw sample yti ∼ Di(u

t
i);

5 3. Estimation update: At
i ← At−1

i − νt
(
At−1

i uti − yti
)
(uti)

⊤;

6 4. Query the environment: Draw sample zti ∼ Di(x
t);

7 5. Individual gradient update:

xt+1
i ← projXi

(
xti − ηt

(
∇iℓi(x

t, zti) + (At
ii)

⊤∇ziℓi(x
t, zti)

))
;

8 end

9 end

Algorithm 2: OPGD in the RKHS setting

Input: Kernel K, initial x1, initial f0i = 0, step sizes of GD {ηt}t∈N, step sizes of stochastic

approximation {νt}t∈N, regularization term {λt}t∈N, sampling distribution ρX
1 for t ∈ N do

2 for i ∈ [n] do

3 1. Random sampling: Draw sample uti ∼ ρX ;
4 2. Query the environment: Draw sample yti ∼ Di(u

t
i);

5 3. Estimation update: f ti ← f t−1
i − νt

[(
f t−1
i (uti)− yti

)
ϕut

i
+ λtf

t−1
i

]
;

6 4. Query the environment: Draw sample zti ∼ Di(x
t);

7 5. Individual gradient update:

xt+1
i ← projXi

(
xti − ηt

(
∇iℓi(x

t, zti) +
(
⟨f ti , ∂iϕxt⟩H

)⊤∇ziℓi(x
t, zti)

))
;

8 end

9 end

B Preliminary

B.1 Lemma for Stochastic Gradient Methods

In this section, we present a lemma (Lemma B.2) for the projected stochastic gradient method

with bias following Narang et al. (2022). This lemma plays an important role in the convergence

analysis of Algorithm 1 and Algorithm 2, specifically, in the proofs of Lemma 4.10 and Lemma C.1.
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We consider the variational inequality

0 ∈ H(x) +NX (x), (B.1)

where X ⊂ Rd the compact and convex joint action set and H : Rd → Rd is an L-Lipschitz

continuous and τ -strongly monotone map. Recalling (2.3), this inequality characterizes the Nash

equilibrium x∗ of the game (2.1):

x∗i = argmin
xi∈Xi

Li(xi, x∗−i).

Suppose we use projected stochastic gradient descent to find x∗ and perform the following update

in each iteration:

xt+1 = projX (x
t − ηht), (B.2)

where η is the gradient step size and ht is the estimator of H(xt). Mathematically, we make the

following assumption on the randomness of the estimator ht.

Assumption B.1. (Stochastic framework). Suppose that there exist a filtered probability space

(Ω,P) with filtration F = {Ft}t∈N such that F0 = {∅,Ω}. Suppose that ht is Ft+1-measurable

and there exist constants U, V ≥ 0 and Ft-measurable random variables mt, σt ≥ 0 such that the

following inequalities hold

(Bias) ∥Eth
t −H(xt)∥ ≤ mt + U∥xt − x∗∥,

(Variance) Et∥ht − Eth
t∥2 ≤ σ2t + V 2∥xt − x∗∥,

(B.3)

where Et = E[·|Ft] denotes the conditional expectation with Ft.

If Assumption B.1 holds, then the following one-step error bound holds for the projected stochas-

tic gradient descent when constant U = 0. In this case, xt converges to a neighborhood of x∗ and

radius of the neighborhood is depend on {mt}t∈N,

Lemma B.2. (One-step error). Suppose U = 0 and η ≤ τ/(4L2), then the iterates xt generated

by the projected stochastic gradient method satisfy the inequality

Et∥xt+1 − x∗∥2 ≤ 1 + 2η2V 2

1 + ητ
∥xt − x∗∥2 + 2η2σ2t

1 + ητ
+

2ηm2
t

τ(1 + ητ)
. (B.4)

Proof. See Narang et al. (2022, Theorem 8) for a detailed proof.

B.2 Basic of RKHS

In this section, we summarize the basic properties of RKHS. We refer readers to Cucker and Smale

(2002); Smale and Zhou (2007); Steinwart and Christmann (2008); Steinwart and Scovel (2012);

Fischer and Steinwart (2020) for the mathematical foundations of RKHS.

Let X be a compact subset of Rd and let ρX be a probability measure on X . Let K : X ×X → R
be a continuous Mercer kernel, namely, a continuous, symmetric, and positive semi-definite real
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function. The Mercer kernel K and measure ρX induce a unique RKHS H. Let ϕ : X → H be

the feature map of the kernel K, namely, ϕx := K(·, x) ∈ H for all x ∈ X . The most important

property of RKHS is the reproducing property: f(x) = ⟨f, ϕx⟩H for all f ∈ H and x ∈ X . Define

the integral operator LK : L2ρX → H by the following integral transform

LK(f)(x) :=

∫
X
K(x, t)f(t)dρX (t), ∀f ∈ H, ∀x ∈ X .

For any x ∈ X , let ϕ∗x : H → R be the dual of ϕx, which satisfies ϕ∗x(f) = ⟨f, ϕx⟩H = f(x) for all

f ∈ H and x ∈ X . With this notation, we define the operator Lx : H → H

Lx(f) := (ϕ∗xϕx)(f) = f(x)ϕx, ∀f ∈ H, ∀x ∈ X .

This definition implies that Lx is a compact, self-adjoint, and positive-semidefinite operator on H.
Using the reproducing property, the covariance operator LK |H : H → H is the expectation of Lx:

LK |H(·) = Ex∼ρX [⟨·,Kx⟩HKx] = Ex∼ρXϕ
∗
xϕx.

Define the natural inclusion IρX : H → L2ρX , mapping a function f ∈ H to L2ρX (since K is a

Mercer kernel, any f ∈ H is square-integrable). According to Steinwart and Christmann (2008);

Fischer and Steinwart (2020), the operator IρX is well-defined, Hilbert-Schmidt, the Hilbert-Schmidt

norm is finite and satisfies

∥IρX ∥HS =

(∫
X
k(x, x)dρX (x)

)1/2

<∞.

Moreover, the adjoint operator of IρX is the integral operator LK , namely, I∗ρX = LK . Therefore,

the covariance operator LK |H is compact, self-adjoint, and positive semi-definite:

LK |H = LKIρX = I∗ρX IρX .

By Mercer’s theorem, the kernel K has the spectral decomposition K =
∑∞

i=1 µiei ⊗ ei, where ⊗
denotes the tensor product, {µi}∞i=1 are eigenvalues and {ei}∞i=1 are eigenfunctions of the operator

LK . Here {ei}∞i=1 is the orthogonal basis of L2ρX and {µ1/2i ei}∞i=1 is the orthogonal basis of H,
namely, L2ρX = {

∑∞
i=1 aiei : {ai}∞i=1 ∈ ℓ2},H = {

∑∞
i=1 aiµ

1/2
i ei : {ai}∞i=1 ∈ ℓ2}.

Following Steinwart and Scovel (2012, Theorem 2.11), LK has the spectral representation

LK =
∞∑
i=1

µ
1/2
i ⟨ei, ·⟩Lρ2X

µ
1/2
i ei =

∞∑
i=1

µi⟨µ1/2i ei, ·⟩Hµ1/2i ei. (B.5)

We further define the operator Lα
K : L2ρX → L

2
ρX such that

Lα
K :=

∞∑
i=1

µαi ⟨ei, ·⟩Lρ2X
ei,

namely, Lα
K(f) =

∑∞
i=1 aiµ

α
i ei for all f =

∑∞
i=1 aiei ∈ L2ρX . It is well-known that L

1/2
K : L2ρX → H

is an isometric isomorphism between L2ρX and H.
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B.3 Power Spaces

Given the Mercer kernel K and measure ρX , suppose that µi, ei are eigenvalues and eigenfunctions.

For any α > 0, define the α-power space: Hα =
{∑∞

i=1 aiµ
α/2
i ei : {ai}∞i=1 ∈ ℓ2

}
, equipped with

the α-power norm ∥·∥α and inner product ⟨·, ·⟩α, where ∥
∑∞

i=1 aiµ
α/2
i ei∥α :=

(∑∞
i=1 a

2
i

)1/2
and

⟨
∑∞

i=1 aiµ
α/2
i ei,

∑∞
i=1 biµ

α/2
i ei⟩α =

∑∞
i=1 aibi. We summarize the basic properties of power spaces

and refer readers to Fischer and Steinwart (2020) for a detailed review.

(i) H1 = H, H0 = L2ρX , and H
α ⊂ Hβ ⊂ L2ρX for any α > β > 0.

(ii) ∥·∥1 = ∥·∥H and ∥·∥0 = ∥·∥ρX .

(iii) Hα is an RKHS on X induced by the kernel Kα :=
∑∞

i=1 µ
α
i ei ⊗ ei and measure ρX if the

kernel Kα is bounded, namely, the embedding property (Assumption 4.14) holds for α.

(iv) {µαi }∞i=1 are eigenvalues and {ei}∞i=1 are eigenfunctions of the kernel K.

(v) {µα/2i ei}∞i=1 is an orthogonal basis of the power space Hα.

(vi) Hα = L
α/2
K (L2ρX ) = L

(α−1)/2
K (H).

Moreover, for any α ∈ (0, 1], the α-power space is characterized by the interpolation spaces

of the real method, namely, Hα ∼= [L2ρX ,H]α,2 (Triebel, 1995; Steinwart and Scovel, 2012). Given

this interpolation property, we present another example that satisfies Assumptions 4.13, 4.14, 4.15

following Fischer and Steinwart (2020).

Example B.3. (Besov RKHS). For d ∈ N, let X ⊂ Rd be a non-empty, open, connected, and

bounded set with a C∞ boundary, equipped with the Lebesgue-Borel σ-algebra and measure µ.

Let L2(X ) := L2(µ) denote the corresponding L2 space. For m ∈ N, denote the Sobolev space with

smoothness m by Wm(X ) :=Wm,2(X ), and for r > 0 the Besov space Br2,2(X ) is defined by means

of the real interpolation Br2,2(X ) := [L2(X ),Wm(X )]r,m/2, where m = min{k ∈ N : k > r} Adams

and Fournier (2003). By the theory of interpolation space, the Besov spaces Br2,2(X ) are separable

Hilbert space and satisfy

Br2,2(X ) ∼= [L2(X ),Bt2,2(X )]r/t,2
for all t > r > 0. Define the Besov RKHS as

Hr(X ) := {f ∈ C0(X ) : [f ]µ ∈ Br2,2(X ))}

equipped with the norm ∥f∥Hr(X ) := ∥[f ]µ∥Br
2,2(X ), where [f ]µ denotes the µ-equivalent class of

f . Let each coordinate of the parametric function fi ∈ Bs2,2(X ) for some 0 < s < r, then the

interpolation property of α-power space

Hα
r (X ) ∼= [L2(X ),Hr(X )]α,2 ∼= Bαr2,2(X ) (B.6)

implies that Assumption 4.13 holds for β = s/r. Moreover, the Sobolev embedding theorem for

Besov Spaces indicates that the mapping of a µ-equivalence class to its continuous representative
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is linear and continuous (Triebel, 2010), i.e. for r > j+d/2, Br2,2(X ) is continuously embedded into

Cj(X ):
Br2,2(X )→ Cj(X )→ L∞(X ), (B.7)

thus, Assumption 4.15 holds for j ≥ 1. Combining (B.6) and (B.7), the embedding property

(Assumption 4.14) holds for all α ∈ (d+2j
2r , 1], see Fischer and Steinwart (2020, Section 4) for more

details.

C Proofs of Main Theorems

C.1 Proof of Theorem 4.6

We use Lemma B.2 to derive the one-step error bound. It is sufficient to check that the estimator

for the gradient H(x) satisfies Assumption B.1. Recalling the gradient step (4.2), the gradient

estimator at iteration t is

ht = (∇iℓ
t
i(x

t, zti) + (∂f ti (x
t)/∂xi)

⊤∇ziℓ
t
i(x

t, zti))i∈[n]. (C.1)

Recalling (2.8), the true gradient is

H(xt) = (∇iLi(xt))i∈[n] =
(
Et

[
∇iℓi(x

t, zti) +
(
∂fi(x

t)/∂xi
)⊤∇ziℓi(x

t, zti)
])

i∈[n]
. (C.2)

Let us prove that the gradient estimator ht satisfies the Assumption B.1. To do this, we compute

the bias and variance terms, respectively.

Bias. Combining (C.1) and (C.2), we have

∥Eth
t −H(xt)∥2 ≤ 2

n∑
i=1

(
∥Et[∇i(ℓ

t
i − ℓi)(xt, zti)]∥2︸ ︷︷ ︸
(I)

+ ∥Et

[
(∂f ti (x

t)/∂xi − ∂fi(xt)/∂xi)⊤∇ziℓi(x
t, zti)

]
∥2︸ ︷︷ ︸

(II)

+ ∥Et

[
(∂f ti (x

t)/∂xi)
⊤∇zi(ℓ

t
i − ℓi)(xt, zti)

]
∥2︸ ︷︷ ︸

(III)

)
.

(C.3)

Recall (4.3), we obtain the bounds (I) ≲ O(t−2a2), (III) ≲ O(t−2a2), and the bound for (II):

(II) ≤
n∑

i=1

∥∂f ti (xt)/∂xi − ∂fi(xt)/∂xi∥2F ∥Et∇ziℓi(x
t, zti)∥2 ≲ O(t−2a1),

where we use the fact that ∥Et(∇ziℓi(x
t, zti))i∈[n]∥ ≤ δ (following Assumption 4.3). Plugging these

bounds into (C.3), we obtain

∥Eth
t −H(xt)∥ ≤ O(t−a1∧a2). (C.4)

Comparing (C.4) with (B.3), we have mt = O(t−a1∧a2) and U = 0.
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Variance. Recalling (C.1), defineAt := (∇iℓ
t
i(x

t, zti))i∈[n] andB
t := ((∂f ti (x

t)/∂xi)
⊤∇ziℓ

t
i(x

t, zti))i∈[n],

then ht = At +Bt. We compute the variance of ht

Et∥ht − Eth
t∥2 = Et∥(At − EtA

t) + (Bt − EtB
t)∥2

≤ 2
(
Et∥At − EtA

t∥2 + Et∥Bt − EtB
t∥2
)
.

(C.5)

Now we derive the upper bounds for last the two terms of (C.5), respectively.

Upper bound of Et∥At − EtA
t∥2. By the definition of At,

Et∥At − EtA
t∥2 ≲ Et∥(∇i(ℓi − ℓti)(xt, zti))i∈[n]∥2 + Et∥(∇iℓi(x

t, zti)− Et∇iℓi(x
t, zti))i∈[n]∥2

+ ∥Et(∇i(ℓi − ℓti)(xt, zti))i∈[n]∥2

≲ O(t−2a2) + ζ2 ≲ O(1),
(C.6)

where we use the fact Et∥(∇iℓi(x
t, zti)− Et∇iℓi(x

t, zti))i∈[n]∥2 ≤ ζ2 (following Assumption 4.4).

Upper bound of Et∥Bt − EtB
t∥2. We similar decomposition, we have

Et∥Bt − EtB
t∥2 ≲ O(t−2a1) + Et∥((∂f ti (xt)/∂xi)⊤

[
∇ziℓi(x

t, zti)− Et∇ziℓi(x
t, zti)

]
)i∈[n]∥2

≲ O(t−2a1) + sup
i∈[n]
∥∂f ti (xt)/∂xi∥2FEt∥(

[
∇ziℓi(x

t, zti)− Et∇ziℓi(x
t, zti)

]
)i∈[n]∥2.

Again, Assumption 4.4 implies that

Et∥(
[
∇ziℓi(x

t, zti)− Et∇ziℓi(x
t, zti)

]
)i∈[n]∥2 ≤ ζ2.

Therefore,

Et∥Bt − EtB
t∥2 ≲ O(1), (C.7)

Combining (C.6) and (C.7), we have

Et∥ht − Eth
t∥2 ≲ O(1). (C.8)

Comparing (C.8) with (B.3), we have σ2t = O(1) and V = 0. Using Lemma B.2, we obtain the

one-step error

Et∥xt+1 − x∗∥2 ≲ 1

1 + ηtτ
∥xt − x∗∥2 + η2t · O(1) + ηt · O(t−2(a1∧a2))

≲
1

1 + ηtτ
∥xt − x∗∥2 +O(t−1−(1∧2a1∧2a2)).

(C.9)

Using Lemma G.1, we have

Et∥xt+1 − x∗∥2 ≲ O(t−(1∧2a1∧2a2)).
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C.2 Proof of Theorem 4.9

Recalling Lemma 4.11. Taking expectation on both sides of (4.6), we have

E∥xt+1−x∗∥2 ≤ 1

1 + ηtτ
E∥xt−x∗∥2+

4η2t ζ
2(1 + E

[
supi∈[n]∥At

i∥2F
]
)

1 + ηtτ
+
2ηtδ

2E
[
supi∈[n]∥At

i −Ai∥2F
]

τ(1 + ηtτ)
,

(C.10)

where ηt = 2/(τ(t+ t0)) denotes the gradient step size. Let us consider the two terms involving At
i

in the RHS of (C.10), i.e. E
[
supi∈[n]∥At

i −Ai∥2F
]
and E

[
supi∈[n]∥At

i∥2F
]
.

Upper bound of E
[
supi∈[n]∥At

i −Ai∥2F
]
. Using Lemma 4.10, we have

E

[
sup
i∈[n]
∥At

i −Ai∥2F

]
≤ E

[
n∑

i=1

∥At
i −Ai∥2F

]
≤ M

t+ t0
, (C.11)

where M := 2t40
∑n

i=1∥A0
i −Ai∥2F /(t0 + 1)3 + 8nl2σ

2(t0 + 2)2/(l21(t0 + 1)2) is a constant.

Upper bound of E
[
supi∈[n]∥At

i∥2F
]
. Using (C.11), we have

E

[
sup
i∈[n]
∥At

i∥2F

]
≤ 2E

[
sup
i∈[n]
∥At

i −Ai∥2F + sup
i∈[n]
∥Ai∥2F

]
≤ 2(M(t+ t0)

−1 + sup
i∈[n]
∥Ai∥2F ).

(C.12)

Plugging (C.11) and (C.12) into (C.10), we obtain the upper bound for the RHS of (C.10), i.e.

E∥xt+1 − x∗∥2 ≤ 1

1 + ηtτ
E∥xt − x∗∥2 +

4η2t ζ
2(1 + 2(M/(t+ t0) + supi∈[n]∥Ai∥2F ))

1 + ηtτ
+

2ηtδ
2M/(t+ t0)

τ(1 + ηtτ)
.

Define constants D1 and D2 as follow

D1 := 4ζ2(1 + 2(M/(t+ t0) + sup
i∈[n]
∥Ai∥2F )), D2 := 2δ2M,

then we have

E∥xt+1 − x∗∥2 ≤ 1

1 + ηtτ
E∥xt − x∗∥2 + D1η

2
t

1 + ηtτ
+
D2ηt/t

1 + ηtτ

≤ (1− ηtτ)E∥xt − x∗∥2 +D1η
2
t +D2ηtt

−1.

(C.13)

Since ηt = 2/(τ(t+ t0)), (C.13) implies that

E∥xt+1 − x∗∥2 ≤
(
1− 2

t+ t0

)
E∥xt − x∗∥2 + 4D1

τ2(t+ t0)2
+

2D2(t0 + 1)

τ(t+ t0)2

=

(
1− 2

t+ t0

)
E∥xt − x∗∥2 + 4D1/τ

2 + 2D2(t0 + 1)/τ

(t+ t0)2

=
t∏

i=1

(
1− 2

i+ t0

)
∥x1 − x∗∥2 +

t∑
i=1

4D1/τ
2 + 2D2(t0 + 1)/τ

(i+ t0)2

t∏
j=i+1

(
1− 2

j + t0

)
.

(C.14)
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Moreover, note that

t∏
j=s

(
1− 2

j + t0

)
≤ e−2

∑t
j=s(j+t0)−1

≤ e−2
∑t

j=s

∫ j+1
j (x+t0)−1dx =

(
s+ t0

t+ 1 + t0

)2

. (C.15)

Plugging (C.15) into (C.14), we finish the proof

E∥xt+1 − x∗∥2 ≤
(

t0 + 1

t+ 1 + t0

)2

∥x1 − x∗∥2 +
t∑

i=1

4D1/τ
2 + 2D2(t0 + 1)/τ

(i+ t0)2

(
i+ 1 + t0
t+ 1 + t0

)2

≤
(

t0 + 1

t+ 1 + t0

)2

∥x1 − x∗∥2 + (4D1/τ
2 + 2D2(t0 + 1)/τ)(t0 + 2)2/(t0 + 1)2

t+ 1 + t0
.

C.3 Proof of Theorem 4.19

We prove the following generalized version of Theorem 4.19.

Theorem 4.19′ . Suppose that all the assumptions of Theorem 4.19 hold. For all iterations t

and positive constant a, define t = t + t0, where t0 is a constant satisfies t0 ≥ (aκ2 + 1)2. Set the

gradient steps and regularization terms as

ηt =
1

τt
, νt = a

(
1

t

)β−γ+1
β−γ+2

, λt =
1

a

(
1

t

) 1
β−γ+2

, (C.16)

where γ takes values in [α, β) and γ ≤ 1. If a <
√
(β − γ + 2)/(β − γ)(t0 + 1)/(t0 + 2)κγ−2A−1,

the xt generated by the OPGD algorithm in Section 3 for kernel function class (Algorithm 2) with

input kernel K satisfies

E∥xt+1 − x∗∥2 ≲ O(t−
β−γ

β−γ+2 ). (C.17)

We use Lemmas 4.18 and C.1 to derive the convergence rate of xt. See Appendix E for the

proof of these claims.

Lemma C.1. (One-step error). Suppose that Assumptions 4.1, 4.2, 4.3, 4.4 hold and all the

assumptions in Lemma 4.18 hold. Let G = {Gt}t∈N be the filtration Gt = σ{{xj}j∈[T ]∪ (uti, yti)} and
define Et[·] = E[·|Gt]. For any gradient steps ηt ≤ τ/(4L2), the iterates generated by Algorithm 2

satisfies

Et∥xt+1 − x∗∥2 ≤ 1

1 + ηtτ
∥xt − x∗∥2 +

4η2t ζ
2(1 + ξ2 supi∈[n]∥f ti ∥2γ)

1 + ηtτ
+

2ηtξ
2δ2 supi∈[n]∥f ti − fi∥2γ

τ(1 + ηtτ)
,

(C.18)

where L is the Lipschitz constant of individual gradient H(x) defined in Section 2, δ is defined in

Assumption 4.3, and ζ is defined in Assumption 4.4.

To begin with, using Lemma C.1 and taking expectation on both sides of (C.18), we have

E∥xt+1−x∗∥2 ≤ 1

1 + ηtτ
E∥xt−x∗∥2+

4η2t ζ
2(1 + ξ2E

[
supi∈[n]∥f ti ∥2γ

]
)

1 + ηtτ
+
2ηtξ

2δ2E
[
supi∈[n]∥f ti − fi∥2γ

]
τ(1 + ηtτ)

,

(C.19)

where γ ∈ [α, β) and ηt = 1/(τ(t + t0)) is the gradient step size. Let us consider the two terms

involving f ti in the RHS of (C.19), namely, E
[
supi∈[n]∥f ti − fi∥2γ

]
and E

[
supi∈[n]∥f ti ∥2γ

]
.
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Upper bound of E
[
supi∈[n]∥f ti − fi∥2γ

]
. Lemma 4.18 implies that for any γ ∈ [α, β) and i ∈

[n], if we set the parameters as (C.16), then the estimation error E∥f ti − fi∥γ is bounded by

O(t−(β−γ)/(β−γ+2)), i.e. there exist constants {Mi(γ)}i∈[n] such that

E∥f ti − fi∥γ ≤Mi(γ)t
− β−γ

β−γ+2 ,

where the constant Mi(γ) only depends on γ. Define M(γ) :=
∑n

i=1Mi(γ), we have

E

[
sup
i∈[n]
∥f ti − fi∥2γ

]
≤ E

[
n∑

i=1

∥f ti − fi∥2γ

]
≤M(γ)t

− β−γ
β−γ+2 . (C.20)

Upper bound of E
[
supi∈[n]∥f ti ∥2γ

]
. Using Lemma 4.18 again, we have

E

[
sup
i∈[n]
∥f ti ∥2γ

]
≤ 2E

[
sup
i∈[n]
∥f ti − fi∥2γ + sup

i∈[n]
∥fi∥2γ

]
(a)

≤ 2(M(γ)t
− β−γ

β−γ+2 + sup
i∈[n]
∥fi∥2γ).

(C.21)

where (a) uses (C.20).

Plugging (C.20) and (C.21) into (C.19), we obtain the upper bound for the RHS of (C.19), i.e.

E∥xt+1 − x∗∥2 ≤ 1

1 + ηtτ
E∥xt − x∗∥2 +

4η2t ζ
2(1 + 2ξ2(M(γ)t

− β−γ
β−γ+2 + supi∈[n]∥fi∥2γ))

1 + ηtτ

+
2ηtξ

2δ2M(γ)t
− β−γ

β−γ+2

τ(1 + ηtτ)
.

Define constants D1 and D2

D1 := 4ζ2(1 + 2ξ2(M(γ) + sup
i∈[n]
∥fi∥2γ)), D2 := 2ξ2δ2M(γ)/τ,

then we have

E∥xt+1 − x∗∥2 ≤ 1

1 + ηtτ
E∥xt − x∗∥2 + D1η

2
t

1 + ηtτ
+
D2ηtt

− β−γ
β−γ+2

1 + ηtτ

≤ (1− ηtτ)E∥xt − x∗∥2 +D1η
2
t +D2ηtt

− β−γ
β−γ+2 .

Note that ηt = 1/(τ(t+ t0)), therefore

E∥xt+1 − x∗∥2 ≤
(
1− 1

t+ t0

)
E∥xt − x∗∥2 + D1

τ2(t+ t0)2
+
D2(t0 + 1)

β−γ
β−γ+2

τ(t+ t0)
1+ β−γ

β−γ+2

.

Moreover, since β − γ < 2, we have 2 > 1 + (β − γ)/(β − γ + 2). As a result,

E∥xt+1 − x∗∥2 ≤
(
1− 1

t+ t0

)
E∥xt − x∗∥2 + D1/τ

2 +D2/τ(t0 + 1)(β−γ)/(β−γ+2)

(t+ t0)
1+ β−γ

β−γ+2

. (C.22)

37



Using Lemma G.1, comparing (C.22) with (G.1), we have a = 1+ β−γ
β−γ+2 and b = D1/τ

2+D2/τ(t0+

1)(β−γ)/(β−γ+2). Therefore, by Lemma G.1, we have

E∥xt − x∗∥2 ≲ O(t−
β−γ

β−γ+2 ).

Note that γ ∈ [α, β), to get the best convergence rate, we set γ = α, then we obtain Theorem 4.19.

C.4 Proof of Proposition 4.5

Recalling Definition 2.3, we are going to prove that: (i) Li(x) are convex in xi when x−i are fixed

for all i ∈ [n]; (ii) the gradient H(x) is a strongly monotone map with respect to x.

Convexity of Li(x) in xi. Let us prove the following inequality, which is enough to show the

convexity:

⟨∇iLi(xi, x−i)−∇iLi(x′i, x−i), xi − x′i⟩ ≥ 0, ∀xi, x′i ∈ Xi, x−i ∈ X−i.

Recalling (2.6), we have

∇iLi(xi, x−i) = Pi(xi, x−i) +Qi(xi, x−i), (C.23)

where

Pi(xi, x−i) = E
zi∼Di(xi,x−i)

∇iℓi(xi, x−i, zi) and Qi(xi, x−i) =
d

dui
E

zi∼Di(ui,x−i)
ℓi(xi, x−i, zi)

∣∣∣
ui=xi

.

Thus, the difference between individual gradients at (xi, x−i) and (x′i, x−i) is

∇iLi(xi, x−i)−∇iLi(x′i, x−i) = Pi(xi, x−i)− Pi(x
′
i, x−i)︸ ︷︷ ︸

(I)

+Qi(xi, x−i)−Qi(x
′
i, x−i)︸ ︷︷ ︸

(II)

.
(C.24)

• Analysis of (I).

Let us derive the lower bound of ⟨Pi(xi, x−i)−Pi(x
′
i, x−i), xi−x′i⟩. Under the parametric assumption

2.6, we have the following decomposition

Pi(xi, x−i)− Pi(x
′
i, x−i) = E

zi∼Di(xi,x−i)
∇iℓi(xi, x−i, zi)− E

zi∼Di(x′
i,x−i)

∇iℓi(x
′
i, x−i, zi)

= E
ϵi∼Pi

∇iℓi(xi, x−i, fi(xi, x−i) + ϵi)− E
ϵi∼Pi

∇iℓi(x
′
i, x−i, fi(x

′
i, x−i) + ϵi)

= E
ϵi∼Pi

[
∇iℓi(xi, x−i, fi(xi, x−i) + ϵi)−∇iℓi(x

′
i, x−i, fi(x

′
i, x−i) + ϵi)

]
.

Thus, we can further decompose the above equation as

Pi(xi, x−i)− Pi(x
′
i, x−i) = E

ϵi∼Pi

[
∇iℓi(xi, x−i, fi(xi, x−i) + ϵi)−∇iℓi(x

′
i, x−i, fi(xi, x−i) + ϵi)

∇iℓi(x
′
i, x−i, fi(xi, x−i) + ϵi)−∇iℓi(x

′
i, x−i, fi(x

′
i, x−i) + ϵi)

]
.

(C.25)
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We analyze two rows in RHS of (C.25), respectively. Since the game (4.1) is S-strongly monotone

for y = (xi, x−i), then for the first row of (C.25), we have

E
ϵi∼Pi

⟨∇iℓi(xi, x−i, fi(xi, x−i) + ϵi)−∇iℓi(x
′
i, x−i, fi(xi, x−i) + ϵi), xi − x′i⟩ ≥ S∥xi − x′i∥2. (C.26)

Also, using the Ri-Lipschitz continuity of ∇iℓi(xi, x−i, zi) with respect to zi and the Li-Lipschitz

continuity of fi(xi, x−i) with respect to (xi, x−i). For the second row of (C.25), we obtain

⟨∇iℓi(x
′
i, x−i, fi(xi, x−i) + ϵi)−∇iℓi(x

′
i, x−i, fi(x

′
i, x−i) + ϵi), xi − x′i⟩

≥ −Ri∥fi(xi, x−i)− fi(x′i, x−i)∥∥xi − x′i∥ ≥ −LiRi∥xi − x′i∥2.
(C.27)

Plugging (C.26) and (C.27) into (C.25), we have

⟨Pi(xi, x−i)− Pi(x
′
i, x−i), xi − x′i⟩ ≥ (S − LiRi)∥xi − x′i∥2. (C.28)

• Analysis of (II).

Let us derive the lower bound of ⟨Qi(xi, x−i) − Qi(x
′
i, x−i), xi − x′i⟩. The same as (I), we propose

the following decomposition:

Qi(xi, x−i)−Qi(x
′
i, x−i) =

d

dui
E

zi∼Di(ui,x−i)
ℓi(xi, x−i, zi)

∣∣∣
ui=xi

− d

dui
E

zi∼Di(ui,x−i)
ℓi(x

′
i, x−i, zi)

∣∣∣
ui=xi

+
d

dui
E

zi∼Di(ui,x−i)
ℓi(x

′
i, x−i, zi)

∣∣∣
ui=xi

− d

dui
E

zi∼Di(ui,x−i)
ℓi(x

′
i, x−i, zi)

∣∣∣
ui=x′

i

.

(C.29)

We analyze two rows in RHS of (C.29), respectively. For the first row of (C.29), we have

⟨ d
dui

E
zi∼Di(ui,x−i)

ℓi(xi, x−i, zi)
∣∣∣
ui=xi

− d

dui
E

zi∼Di(ui,x−i)
ℓi(x

′
i, x−i, zi)

∣∣∣
ui=xi

, xi − x′i⟩

= ⟨ d
dui

E
zi∼Di(ui,x−i)

[
ℓi(xi, x−i, zi)− ℓi(x′i, x−i, zi)

] ∣∣∣
ui=xi

, xi − x′i⟩
(C.30)

Using the fundamental theorem of calculus, we have

ℓi(xi, x−i, zi)− ℓi(x′i, x−i, zi) =

∫ 1

0
⟨∇iℓi(x

′
i + s(xi − x′i), x−i, zi), xi − x′i⟩ds.

Plugging this into (C.30) and using Cauchy–Schwarz inequality, we obtain

⟨ d
dui

E
zi∼Di(ui,x−i)

ℓi(xi, x−i, zi)
∣∣∣
ui=xi

− d

dui
E

zi∼Di(ui,x−i)
ℓi(x

′
i, x−i, zi)

∣∣∣
ui=xi

, xi − x′i⟩

≥ −∥ d
dui

E
zi∼Di(ui,x−i)

[
ℓi(xi, x−i, zi)− ℓi(x′i, x−i, zi)

] ∣∣∣
ui=xi

∥∥xi − x′i∥

(a)
= −

∫ 1

0
∥ d
dui

E
zi∼Di(ui,x−i)

∇iℓi(x
′
i + s(xi − x′i), x−i, zi)

∣∣∣
ui=xi

∥ds ∗ ∥xi − x′i∥2,

(C.31)
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here (a) holds because the integral
∫ 1
0 is exchangeable with the expectation and differential op-

erators and further induced by Jensen’s inequality. Now we consider the differentiable map u →
Ezi∼Di(u,x−i)∇iℓi(x, zi), it is easy to check that this map is LiRi-Lipschitz:

∥ E
zi∼Di(u,x−i)

∇iℓi(x, zi)− E
zi∼Di(u′,x−i)

∇iℓi(x, zi)∥ ≤ LiRi∥u− u′∥, ∀x ∈ X .

Therefore, the gradient of this map is bounded by LiRi. Plugging this into (C.31), we have

⟨ d
dui

E
zi∼Di(ui,x−i)

[
ℓi(xi, x−i, zi)− ℓi(x′i, x−i, zi)

] ∣∣∣
ui=xi

, xi − x′i⟩ ≥ −LiRi∥xi − x′i∥2. (C.32)

For the second row of (C.29), since the map u→ Ezi∼Di(u,z−i)ℓi(x, zi) is monotone (by the assump-

tion (ii) in Proposition 4.5), therefore,

⟨ d
dui

E
zi∼Di(ui,x−i)

ℓi(x
′
i, x−i, zi)

∣∣∣
ui=xi

− d

dui
E

zi∼Di(ui,x−i)
ℓi(x

′
i, x−i, zi)

∣∣∣
ui=x′

i

, xi − x′i⟩ ≥ 0. (C.33)

Plugging (C.32) and (C.33) into (C.29), we have

⟨Qi(xi, x−i)−Qi(x
′
i, x−i), xi − x′i⟩ ≥ −LiRi∥xi − x′i∥2. (C.34)

Combining (C.28) and (C.34), we obtain the convexity of Li(x) in xi:

⟨∇iLi(xi, x−i)−∇iLi(x′i, x−i), xi − x′i⟩ ≥ (S − 2LiRi)∥xi − x′i∥2 ≥ 0.

Strong monotonicity of H(x). The steps of proofs for H(x) are exactly the same as the proof

of the individual gradient ∇iLi(x). Therefore, we omit the proof here. One can use the same steps

and technic the check that H(x) is S − 2
√∑n

i=1(LiRi)2-strongly monotone, namely,

⟨H(x)−H(x′), x− x′⟩ ≥

S − 2

√√√√ n∑
i=1

(LiRi)2

 ∥xi − x′i∥2.
D Proofs of Auxiliary Lemmas for Theorem 4.9

D.1 Proof of Lemma 4.10

Recalling the online estimation step for At
i in Algorithm 1. For any i ∈ [n], t ∈ N,

At
i = At−1

i − νt
(
At−1

i uti − yti
)
(uti)

⊤, (D.1)

where νt is the step size, uti, y
t
i are random variables obtained from the environment following the

distribution uti ∼ ρX , yti ∼ Di(u
t
i). Note that (D.1) can be rewritten as the one-step decomposition

At
i −Ai = At−1

i −Ai − νt
(
At−1

i uti − yti
)
(uti)

⊤

= (At−1
i −Ai)(I − νtutiuti

⊤
)− νt(Aiu

t
i − yti)(uti)⊤.
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Using this one-step error decomposition recursively, we obtain

At
i −Ai = (A0

i −Ai)
t∏

j=1

(I − νjujiu
j
i

⊤
)−

t∑
j=1

νj(Aiu
j
i − y

j
i )(u

j
i )

⊤
t∏

k=j+1

(I − νkuki uki
⊤
). (D.2)

We remark that
∏t

j=1(I − νju
j
iu

j
i

⊤
) = (I − ν1u1iu1i

⊤
)(I − ν2u2iu2i

⊤
) · · · (I − νtutiuti

⊤
). Notably, for

any distinct a and b, the matrices I − νauai uai ⊤ and I − νbubiubi
⊤
are not commutative.

Now we use (D.2) to derive the upper bound of E∥At
i −Ai∥2F . By Cauchy’s inequality, we have

E∥At
i −Ai∥2F ≤ 2(E∥(A0

i −Ai)

t∏
j=1

(I − νjujiu
j
i

⊤
)∥2F︸ ︷︷ ︸

(I)

+E∥
t∑

j=1

νj(Aiu
j
i − y

j
i )(u

j
i )

⊤
t∏

k=j+1

(I − νkuki uki
⊤
)∥2F︸ ︷︷ ︸

(II)

).

(D.3)

• Upper bound of (I).

By the definition of matrix operator norm, ∥A(I − νjujiu
j
i

⊤
)∥F ≤ ∥A∥F ∥(I − νjujiu

j
i

⊤
)∥op, thus

E∥(A0
i −Ai)

t∏
j=1

(I − νjujiu
j
i

⊤
)∥2F ≤ E

t∏
j=1

∥I − νjujiu
j
i

⊤∥2op∥A0
i −Ai∥2F . (D.4)

For any i ∈ [n] and j ∈ N, given that uji are independent and identically distributed (i.i.d.)

random variables drawn from the distribution ρX , we can interchange the order of expectation and

multiplication

E
t∏

j=1

∥I − νjujiu
j
i

⊤∥2op =
t∏

j=1

E∥I − νjujiu
j
i

⊤∥2op. (D.5)

Therefore, it is sufficient to derive the upper bound for E∥I − νjujiu
j
i

⊤∥op

∥I − νjujiu
j
i

⊤∥2op = sup
x∈Rd

∥(I − νjujiu
j
i

⊤
)x∥2

∥x∥2

= sup
x∈Rd

∥x∥2 + ν2j ∥u
j
iu

j
i

⊤
x∥2 − 2νj⟨x, ujiu

j
i

⊤
x⟩

∥x∥2
.

(D.6)

Moreover, the matrix inner product can be rewritten as

⟨x, ujiu
j
i

⊤
x⟩ = tr(x⊤ujiu

j
i

⊤
x), ∥ujiu

j
i

⊤
x∥2F = tr(∥uji∥

2x⊤ujiu
j
i

⊤
x).

Therefore, we can (D.6) has the following epxression

E∥I − νjujiu
j
i

⊤∥2op = sup
x∈Rd

∥x∥2 + ν2j tr(E∥u
j
i∥2x⊤u

j
iu

j
i

⊤
x)− 2νjtr(x

⊤Eujiu
j
i

⊤
x)

∥x∥2
. (D.7)
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Recalling Assumption 4.8, we have

tr(E∥uji∥
2x⊤ujiu

j
i

⊤
x) ≤ R ∗ tr(x⊤Eujiu

j
i

⊤
x) ≤ l2R∥x∥2, tr(x⊤Eujiu

j
i

⊤
x) ≥ l1∥x∥2.

Plugging these inequalities into (D.7), we obtain

E∥I − νjujiu
j
i

⊤∥2op ≤ 1− νj(2l1 − νjl2R) ≤ 1− νj(2l1 − ν0l2R)
(a)

≤ 1− l1νj ,
(D.8)

where (a) uses the fact that νt = 2/(l1(t+ t0)) and t0 ≥ 2l2R/l
2
1. Now combining (D.4), (D.5), and

(D.8), we obtain the upper bound for (I):

E∥(A0
i −Ai)

t∏
j=1

(I − νjujiu
j
i

⊤
)∥2F ≤

t∏
j=1

(1− l1νj)2∥A0
i −Ai∥2F

(a)

≤
(

t0
t+ t0

)4

∥A0
i −Ai∥2F , (D.9)

where (a) uses the inequality (C.15).

• Upper bound of (II).

Define ψj
i = (Aiu

j
i − y

j
i )(u

j
i )

⊤, then (II) has the following form

E∥
t∑

j=1

νj(Aiu
j
i − y

j
i )(u

j
i )

⊤
t∏

k=j+1

(I − νkuki uki
⊤
)∥2F = E∥

t∑
j=1

νjψ
j
i

t∏
k=j+1

(I − νkuki uki
⊤
)∥2F

= E
t∑

j=1

∥νjψj
i

t∏
k=j+1

(I − νkuki uki
⊤
)∥2F + 2E

∑
s<j

⟨νsψs
i

t∏
k=s+1

(I − νkuki uki
⊤
), νjψ

j
i

t∏
k=j+1

(I − νkuki uki
⊤
)⟩F .

(D.10)

Let F = {Ft}t∈N be the filtration Ft = σ{{xj}j∈[t]} and define Et = E[·|F t
i ]. Since uji

i.i.d∼ ρX and

yji ∼ D(u
j
i ), then for any i ∈ [n] and j ∈ N, the following equation holds

Ejψ
j
i = E[ψj

i |Fj ] = E[(Aiu
j
i − y

j
i )(u

j
i )

⊤|Fj ] = 0, (D.11)

here we use the linear parametric assumption (Assumption 4.7) and the independency between uji
and the noise term ϵji to obtain

E[(Aiu
j
i − y

j
i )(u

j
i )

⊤|Fj ] = E[(Aiu
j
i − (Aiu

j
i + ϵji ))(u

j
i )

⊤|Fj ] = 0.

Equation (D.11) shows that for a fixed i ∈ [n], {ψj
i }j∈N is a martingale difference sequence with

filtration F . Therefore, the second term in the last equation of (D.10) is zero, i.e.

E
∑
s<j

⟨νsψs
i

t∏
k=s+1

(I − νkuki uki
⊤
), νjψ

j
i

t∏
k=j+1

(I − νkuki uki
⊤
)⟩F

= E

∑
s<j

Es

⟨νsψs
i

t∏
k=s+1

(I − νkuki uki
⊤
), νjψ

j
i

t∏
k=j+1

(I − νkuki uki
⊤
)⟩F


= E

∑
s<j

⟨νsEs[ψ
s
i ]

t∏
k=s+1

(I − νkuki uki
⊤
), νjψ

j
i

t∏
k=j+1

(I − νkuki uki
⊤
)⟩F

= 0.
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Plugging this equation into (D.10), we have

E∥
t∑

j=1

νj(Aiu
j
i − y

j
i )(u

j
i )

⊤
t∏

k=j+1

(I − νkuki uki
⊤
)∥2F = E

t∑
j=1

∥νjψj
i

t∏
k=j+1

(I − νkuki uki
⊤
)∥2F

≤
t∑

j=1

ν2jE

 t∏
k=j+1

∥I − νkuki uki
⊤∥2opEj∥ψj

i ∥
2
F

 . (D.12)

Moreover, Assumption 4.7 and Assumption 4.8 together imply that

Ej∥ψj
i ∥

2
F = Ej∥(Aiu

j
i − y

j
i )(u

j
i )

⊤∥2F = Ej∥ϵji (u
j
i )

⊤∥2F
= Ej∥ϵji∥

2Ej∥uji∥
2 ≤ σ2l2.

Plugging this inequality into (D.12) and using (D.8), we have

E∥
t∑

j=1

νj(Aiu
j
i − y

j
i )(u

j
i )

⊤
t∏

k=j+1

(I − νkuki uki
⊤
)∥2F ≤ σ2l2

t∑
j=1

ν2j

t∏
k=j+1

E∥I − νkuki uki
⊤∥2op

≤ σ2l2
t∑

j=1

ν2j

t∏
k=j+1

(1− l1νk)2.

Using (C.15), we obtain the upper bound for (II)

E∥
t∑

j=1

νj(Aiu
j
i − y

j
i )(u

j
i )

⊤
t∏

k=j+1

(I − νkuki uki
⊤
)∥2F ≤ σ2l2

t∑
j=1

ν2j

t∏
k=j+1

(1− l1νk)2

≤ σ2l2
t∑

j=1

ν2j

t∏
k=j+1

(1− l1νk)2 ≤ σ2l2
t∑

j=1

(
2

l1(j + t0)

)2(j + 1 + t0
t+ 1 + t0

)2

≤ 4l2σ
2

l21

(
t0 + 2

t0 + 1

)2

(t+ t0)
−1.

(D.13)

Plugging (D.9) and (D.13) into (D.3), we finish the proof

E∥At
i −Ai∥2F ≤ 2

((
t0

t+ t0

)4

∥A0
i −Ai∥2F +

4l2σ
2

l21

(
t0 + 2

t0 + 1

)2

(t+ t0)
−1

)

≤ 2

(
t40

(t0 + 1)3
∥A0

i −Ai∥2F +
4l2σ

2

l21

(
t0 + 2

t0 + 1

)2
)
(t+ t0)

−1.

D.2 Proof of Lemma 4.11

We use Lemma B.2 to derive the one-step error bound, it is sufficient to check that the estimator

for the gradient H(x) satisfies Assumption B.1. Recalling Algorithm 1, the gradient estimator at

iteration t is

ht = (∇iℓi(x
t, zti) + (At

ii)
⊤∇ziℓi(x

t, zti))i∈[n]. (D.14)
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Recalling (2.7), the true gradient is

H(xt) = (∇iLi(xt))i∈[n] = (Et

[
∇iℓi(x

t, zti) + (Aii)
⊤∇ziℓi(x

t, zti)
]
)i∈[n]. (D.15)

We remark that {(xj , uji , y
j
i , z

j
i )}i∈[n],j∈[t−1] and (uti, y

t
i) are deterministic with respect to the con-

ditional expectation Et[·] (recalling the definition in Lemma 4.11), therefore, this expectation is

equivalent to Ezti∼Di(xt)[·].
Let us prove that the gradient estimator ht satisfies the Assumption B.1. To do this, we compute

the bias and variance terms, respectively.

• Bias.

Using (D.14) and (D.15), we have

∥Eth
t −H(xt)∥2 =

n∑
i=1

∥Et

[
(At

ii −Aii)
⊤∇ziℓi(x

t, zti)
]
∥2.

Since At
ii is deterministic with respect to the conditional expectation Et[·], we obtain

∥Eth
t −H(xt)∥2 =

n∑
i=1

∥(At
ii −Aii)

⊤Et∇ziℓi(x
t, zti)∥2

≤
n∑

i=1

∥At
ii −Aii∥2F ∥Et∇ziℓi(x

t, zti)∥2.

Assumption 4.3 implies that ∥Et(∇ziℓi(x
t, zti))i∈[n]∥ ≤ δ. Plugging in this inequality, we obtain

∥Eth
t −H(xt)∥ ≤ δ sup

i∈[n]
∥At

ii −Aii∥F ≤ δ sup
i∈[n]
∥At

i −Ai∥F . (D.16)

Comparing (D.16) with (B.3), we have mt = δ supi∈[n]∥At
i −Ai∥F and U = 0.

• Variance.

Recalling (D.14), define At := (∇iℓi(x
t, zti))i∈[n] and Bt := ((At

ii)
⊤∇ziℓi(x

t, zti))i∈[n], then ht =

At +Bt. We compute the variance of ht

Et∥ht − Eth
t∥2 = Et∥(At − EtA

t) + (Bt − EtB
t)∥2

≤ 2
(
Et∥At − EtA

t∥2 + Et∥Bt − EtB
t∥2
)
.

(D.17)

Now we derive the upper bounds for last the two terms of (D.17), respectively.

Upper bound of Et∥At − EtA
t∥2. By the definition of At,

Et∥At − EtA
t∥2 = Et∥(∇iℓi(x

t, zti)− Et∇iℓi(x
t, zti))i∈[n]∥2.

Assumption 4.4 implies that

Et∥At − EtA
t∥2 ≤ ζ2. (D.18)
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Upper bound of Et∥Bt − EtB
t∥2. By the definition of Bt, we have

Et∥Bt − EtB
t∥2 = Et∥((At

ii)
⊤ [∇ziℓi(x

t, zti)− Et∇ziℓi(x
t, zti)

]
)i∈[n]∥2

≤ sup
i∈[n]
∥At

ii∥2FEt∥(
[
∇ziℓi(x

t, zti)− Et∇ziℓi(x
t, zti)

]
)i∈[n]∥2.

Again, Assumption 4.4 implies that

Et∥(
[
∇ziℓi(x

t, zti)− Et∇ziℓi(x
t, zti)

]
)i∈[n]∥2 ≤ ζ2.

Therefore,

Et∥Bt − EtB
t∥2 ≤ ζ2 sup

i∈[n]
∥At

i∥2F , (D.19)

Combining (D.18) and (D.19), we have

Et∥ht − Eth
t∥2 ≤ 2ζ2(1 + sup

i∈[n]
∥At

i∥2F ). (D.20)

Comparing (D.20) with (B.3), we have σ2t = 2ζ2(1 + supi∈[n]∥At
i∥2F ) and V = 0.

Now we have proved that the stochastic gradient estimator ht satisfies the stochastic framework

(Assumption B.1) with U = V = 0, mt = δ supi∈[n]∥At
i − Ai∥F , and σ2t = 2ζ2(1 + supi∈[n]∥At

i∥2F ).
Using Lemma B.2, we obtain the one-step error

Et∥xt+1−x∗∥2 ≤ 1

1 + ηtτ
∥xt−x∗∥2+

4η2t ζ
2(1 + supi∈[n]∥At

i∥2F )
1 + ηtτ

+
2ηtδ

2 supi∈[n]∥At
i −Ai∥2F

τ(1 + ηtτ)
. (D.21)

E Proofs of Auxiliary Lemmas for Theorem 4.19

E.1 Proof of Lemma 4.18

Roadmap To prove Lemma 4.18, we begin with the symmetric of estimation updates, we show

that these updates are independent between agents and have the same structure, thus, it is suffi-

cient to study the iteration of any single agent. Then we propose the basic decomposition of the

estimation error (Lemma E.2), which decomposes the error into three terms. Lemma E.4, Lemma

E.6, and Lemma E.11 provide upper bounds for the three terms in Lemma E.2 and together finish

the proof.

Symmetric of the estimation update. Recalling the estimation update in Algorithm 2

f ti = f t−1
i − νt

[(
f t−1
i (uti)− yti

)
ϕut

i
+ λtf

t−1
i

]
. (E.1)

We show that for any i, j ∈ [n], i ̸= j, and any iteration t, the stochastic estimators f ti , f
t
j are

independent and have the same iteration structure.

• Independency. Note that for any iteration t and i ∈ [n], we have uti
i.i.d∼ ρX and yti =

fi(u
t
i) + ϵti , where the noise terms ϵti are independent of uti for any i and t (Assumption

2.6). Thus, for any i ̸= j, (uti, y
t
i) and (utj , y

t
j) are independent. Moreover, recalling (E.1), f ti

is random variables determined by (u1i , y
1
i ), (u

2
i , y

2
i ), · · · , (uti, yti). As a result, the stochastic

estimators for different agents are independent, i.e. for any i ̸= j, f ti and f tj are independent.
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Figure 4: Proof sketch

• Symmetric. For any i ∈ [n] and iteration t, f ti is a linear combination of {ϕuk
i
}k∈[t], thus,

f ti ∈ H. Using the reproducing property of H, f t−1
i (uti) = ⟨f

t−1
i , ϕut

i
⟩H. Also, recalling that

yti = fi(u
t
i) + ϵti. The iteration (E.1) can be rewritten as

f ti = (I − νt(Lut
i
+ λtI))f

t−1
i + νt(fi(u

t
i) + ϵti)ϕut

i
, (E.2)

where Lut
i
= ϕ∗

ut
i
ϕut

i
: H → H is a compact, self-adjoint and positive-semidefinite operator.

Moreover, since uti
i.i.d∼ ρX follow the same distribution for any i ∈ [n], the induced operators

Lut
i
and ϕut

i
also follow the same distribution for all agents. Consequently, all the f ti have the

same iteration structure

ft = (I − νt(Lt + λtI))ft−1 + νtytϕut ,

where ut ∼ ρX , Lt is the operator induced by ut, and yt ∼ Di(ut) is the observed data. (Note

that the distribution of yt is different for different agents.)

Simplified notation As previously stated, it is enough to analyze the iteration of a single agent.

In the rest of this section, we study the iteration of agent 1 and define the following simplified

notation. We drop the lower index i of terms in (E.2) and define

f := f1, ft := f t1, ut := ut1, yt := yt1, ϕt := ϕut
1
,

where f denotes the true function f1, and ft denotes the estimated parametric function f t1. More-

over, we drop the lower index i of sample spaces Zi and decision-dependent distribution maps Di,

define

Z = Z1, D = D1,
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note that X = X1 × · · · × Xn still denotes the joint action set of n agents.

With the new notation, the gradient step (E.2) would be

ft = (I − νt(Lt + λtI))ft−1 + νtytϕt, (E.3)

where Lt = ϕ∗tϕt : H → H is a compact, self-adjoint and positive-semidefinite operator.

Technical contributions We consider the semi-stochastic population iteration gt (E.4) and

decompose ft−f into three terms fλt−f , fλt−gt, and ft−gt (Lemma E.2). While the analysis for

fλt − f (Lemma E.4) uses standard spectral decomposition techniques, the proofs for fλt − gt and
ft−gt (Lemma E.6 and Lemma E.11) are novel. The proofs are based on important observations that

∥h∥γ = ∥L(1−γ)/2
K h∥H for any h ∈ Hγ and L

(1−γ)/2
K is commutative with the operator I−νt(LK+λtI).

For instance, in (F.17), the commutativity between L
(1−γ)/2
K and Πt

i =
∏t

j=i(I−νj(LK+λjI)) allow

us to leverage the commutativity to decouple the power norm by the operator’s RKHS spectral

norm ∥Πt
i∥H→H and the RKHS norm ∥L(1−γ)/2

K (fλi
− fλi−1

)∥H. This method is involved in the

proofs for Lemmas E.6, E.7, E.8, E.9, E.11 and plays a central role in our analysis.

Another contribution is the recursion decomposition for ft − gt (E.14), where we decompose

ft − gt by a sequence of sampling noise iteration r
(k)
t and derive the power norm bound ∥r(k)t ∥γ

(Lemma F.1). Although an analogous idea was proposed in non-strongly-convex SGD (Bach and

Moulines, 2013), the analysis is essentially difference (because we study this decomposition under

the power norm) and we find that the sampling error ft − gt can be decomposed as a finite sum

of the noise process (Lemma F.2), instead of the infinite sum in Bach and Moulines (2013). This

might potentially extend the method to a broader class of problems, particularly in situations where

∥r(k)t ∥γ , is not constrained by geometrization sequences.

Basic decomposition Now let us derive the upper bound for E∥ft − f∥2γ . We begin with the

basic decomposition (Lemma E.2), which decomposes E∥ft − f∥2γ into three terms. First, define

the semi-stochastic population gt,

g0 = f0, gt = (I − νt(LK + λtI))gt−1 + νtytϕt, (E.4)

where LK : L2ρX → H is the integral operator and its limitation on H is the covariance operator,

i.e. LK |H = Ex∼ρXLx = Ex∼ρXϕ
∗
xϕx. Moreover, LK |H is a compact, self-adjoint, and positive-

semidefinite operator on H.

Remark E.1. Compare (E.3) with (E.4), the semi-stochastic iteration gt replaces the stochastic

operator Lt with its expectation LK , and remains the second stochastic term ytϕt, thus, gt can

be viewed as a population iteration of ft with half-randomness. We show that the deterministic

operator LK has good properties under γ-norm and plays a key role in the following proof.

Lemma E.2. (Basic decomposition). For any iteration t,

(E∥ft − f∥2γ)1/2 ≤ ∥f − fλt∥γ + (E∥fλt − gt∥2γ)1/2 + (E∥gt − ft∥2γ)1/2, (E.5)
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where fλt = (LK + λtI)
−1LKf is the solution of the kernel ridge regression

argmin
h∈H

∫
X×Z

(y − h(u))2dρ+ λt∥h∥2H.

Here, the random variable (u, y) ∈ X ×Z follows the distribution ρ, where ρ is induced by u ∼ ρX
and y ∼ D(u).

Proof. By Minkowski’s inequality,

(E∥ft − f∥2γ)1/2 = (E∥f − fλt + fλt − gt + gt − ft∥2γ)1/2

≤ ∥f − fλt∥γ + (E∥fλt − gt∥2γ)1/2 + (E∥gt − ft∥2γ)1/2.

Remark E.3. We explain the three terms in Lemma E.2.

• The first term ∥f − fλt∥2γ is deterministic and independent from the gradient step (E.3), it

only related to the property of Hilbert space H and kernel K, and the choice of regularization

terms λt. If the source condition (Assumption 4.13) holds with β > γ, we will prove that

∥f − fλt∥2γ converges to zero if λt goes to zero gradually.

• The second term E∥fλt − gt∥2γ describes the gap between the semi-stochastic population

iteration and the regularization path fλt . As aforementioned in Section 4.2, we should choose

gradient step sizes {νt}t∈N and regularization sequence {λt}t∈N properly to control this error.

The convergence of E∥fλt−gt∥2γ is guaranteed by the source condition (Assumption 4.13) and

the embedding property (Assumption 4.14).

• The third term E∥gt− ft∥2γ shows the difference between the population iteration gt and true

iteration ft. Recalling (E.3) and (E.4), this error mainly comes from the difference between

the stochastic operator Lt and its expectation LK , we show that E∥gt − ft∥2γ goes to zero

if the expectation of the spectral norm E∥Lt − LK∥Hγ→Hγ is small. The convergence of

E∥gt − ft∥2γ is guaranteed by the source condition (Assumption 4.13) and the embedding

property (Assumption 4.14).

We set the gradient step size and regularization sequence in the following forms

νt = a(t+ t0)
−θ, λt =

1

a
(t+ t0)

−(1−θ), (E.6)

where a and t0 are positive constants, and θ is a constant to be determined. We derive the

convergence rate for E∥ft − f∥2γ with respect to θ ∈ (1/2, 1], and choose θ to match the best

convergence rate.

In the rest of this section, we are going to derive the upper bounds for three terms in Lemma

E.2
Lemma E.4 ∥f − fλt∥2γ ≲ O

(
t−(1−θ)(β−γ)

)
,

Lemma E.6 E∥fλt − gt∥2γ ≲ O
(
t−((1−θ)(β−γ)∧(2θ−1))

)
,

Lemma E.11 E∥gt − ft∥2γ ≲ O
(
t−(2θ−1)

)
.
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First term of Lemma E.2 Let us derive the upper bound for ∥f − fλt∥2γ .

Lemma E.4. Suppose that the source condition (Assumption 4.13) holds with some β ∈ (0, 2].

For any γ ∈ (0, 1] and β > γ, let λt = a−1 · (t + t0)
−(1−θ), where a, t0 > 0 are constants. The

following bound holds for all t ∈ N:

∥f − fλt∥2γ ≲ O
(
t−(1−θ)(β−γ)

)
. (E.7)

Proof. We make use of the following lemma.

Lemma E.5. Suppose that the assumptions of Lemma E.4 hold, the following bound holds for all

λ > 0:

∥f − fλ∥2γ ≤
(β − γ)β−γ(2− β + γ)2−β+γ

4
∥f∥2βλβ−γ , (E.8)

where fλ = (LK + λI)−1LKf .

Proof. See Appendix F.1 for the proof of this claim.

Using Lemma E.5, for any t ∈ N, let λ = λt = 1/(a(t+ t0)
1−θ), we have

∥f − fλt∥2γ ≤
(β − γ)β−γ(2− β + γ)2−β+γ

4
∥f∥2βλ

β−γ
t

=
(β − γ)β−γ(2− β + γ)2−β+γ

4aβ−γ
∥f∥2β(t+ t0)

−(1−θ)(β−γ)

≲ O
(
t−(1−θ)(β−γ)

)
.

Second term of Lemma E.2 Now we are going to bound the second term in Lemma E.2, i.e.

E∥fλt − gt∥2γ . Using the martingale decomposition for gt − fλt (see Appendix F.6 and Lemma F.1

for explanations):

gt − fλt = Πt
1(g0 − fλ0)︸ ︷︷ ︸

(I)

+
t∑

i=1

νiΠ
t
i+1(yiϕi − LKf)︸ ︷︷ ︸

(II)

−
t∑

i=1

Πt
i(fλi

− fλi−1
)︸ ︷︷ ︸

(III)

,
(E.9)

where Πj
i =

∏j
k=i(I − νk(LK + λkI)) is an operator on H. We derive the γ-norm bound for (I),

(II), (III), respectively. We propose the intuitive explanation for the three terms in (E.9):

(I) is the initial error caused by the deviation of initialization g0 − fλ0 .

(II) is the sampling error induced by the randomness of sampling, i.e. the difference between the

random variable yiϕi and its expectation LKf .

(III) is the drift error caused by the changing of the regularization term λt. Lemma E.9 shows

that fλt − fλt−1 is mostly determined by the gap between λt−1 and λt, i.e. λt − λt−1.
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Note that (I) and (III) are non-random and independent from the gradient step (E.4), they

are determined by the gradient step size {νt}t∈N and the regularization sequence {λt}t∈N, (II) is

stochastic and determined by the sampling data (u1, y1), (u2, y2), · · · , (ut, yt).

Lemma E.6. Suppose that the assumptions of Lemma E.4 hold, let νt = a(t + t0)
−θ and λt =

1/(a(t+t0)
1−θ), where a, t0 > 0 are constants and t0 ≥ (aκ2+1)2. Suppose the embedding property

(Assumption 4.14) holds for some α ∈ (0, γ]. For any θ ∈ (1/2, 1] and any iteration t, the inequality

holds

E∥gt − fλt∥2γ ≲ O
(
t−((1−θ)(β−γ)∧(2θ−1))

)
. (E.10)

Proof. The following lemmas provide the upper bound for (I), (II), and (III) defined in (E.9),

respectively.

Lemma E.7. (Upper bound for (I)). Suppose that the assumptions of Lemma E.6 hold. For any

θ ∈ (1/2, 1] and any iteration t, the following inequality holds

∥Πt
1(g0 − fλ0)∥2γ ≲ O(t−2). (E.11)

Proof. See Appendix F.2 for the proof of this claim.

Lemma E.8. (Upper bound for (II)). Suppose that the assumptions of Lemma E.6 hold. For any

θ ∈ (1/2, 1] and any iteration t, the inequality holds

E∥
t∑

i=1

νiΠ
t
i+1(yiϕi − LKf)∥2γ ≲ O(t1−2θ). (E.12)

Proof. See Appendix F.3 for the proof of this claim.

Lemma E.9. (Upper bound for (III)). Suppose that the assumptions of Lemma E.6 hold. For any

θ ∈ (1/2, 1] and any iteration t, the inequality holds

∥
t∑

i=1

Πt
i(fλi

− fλi−1
)∥2γ ≲ O(t−(1−θ)(β−γ)). (E.13)

Proof. See Appendix F.4 for the proof of this claim.

Given the martingale decomposition (E.9), Lemma E.7, Lemma E.8, and Lemma E.9 together

yield the upper bound for E∥gt−fλt∥2γ . Using equation (E.9) and Minkowski’s inequality, we obtain

(E∥gt − fλt∥2γ)1/2 ≤ (∥Πt
1(g0 − fλ0)∥2γ)1/2 + (E∥

t∑
i=1

νiΠ
t
i+1(yiϕi − LKf)∥2γ)1/2 + (∥

t∑
i=1

Πt
i(fλi

− fλi−1
)∥2γ)1/2

Plugging in Lemma E.7, Lemma E.8, and Lemma E.9, we have

(E∥gt − fλt∥2γ)1/2 ≲ O(t−1) +O(t(1−2θ)/2) +O(t−(1−θ)(β−γ)/2)

≲ O
(
t−((1−θ)(β−γ)∧(2θ−1))/2

)
,

i.e. E∥gt − fλt∥2γ ≲ O
(
t−((1−θ)(β−γ)∧(2θ−1))

)
.
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Third term of Lemma E.2 Now we are going to analyze the third term in the basic decompo-

sition (E.5), i.e. E∥ft − gt∥2γ . This error describes the deviation between the true iteration ft and

the semi-stochastic population iteration gt. We decompose ft− gt by a sequence of semi-stochastic

noise process {r(k)t }k∈N0 (N0 denotes N ∪ 0). Lemma F.2 shows that, for a fixed iteration t, ft − gt
is a finite sum of the noise process. Thus, E∥ft − gt∥2γ is bounded by the upper bounds of the

sequence {E∥r(k)t ∥2γ}k∈N0 . As a result, to derive the convergence rate of E∥ft − gt∥2γ , it is sufficient

to derive upper bounds for th γ-norm of the noise process {r(k)t }k∈N0 .

Let us define the noise process {r(k)t }k∈N0 . For any t ∈ N, define

r
(0)
0 = 0, r

(0)
t = (I − νt(LK + λtI))r

(0)
t−1 + νt(LK − Lt)gt−1,

r
(1)
0 = 0, r

(1)
t = (I − νt(LK + λtI))r

(1)
t−1 + νt(LK − Lt)r

(0)
t−1,

r
(2)
0 = 0, r

(2)
t = (I − νt(LK + λtI))r

(2)
t−1 + νt(LK − Lt)r

(1)
t−1,

...

r
(k)
0 = 0, r

(k)
t = (I − νt(LK + λtI))r

(k)
t−1 + νt(LK − Lt)r

(k−1)
t−1 ,

...

(E.14)

Intuitive explanation We briefly illustrate the noise process. (Appendix F.6 provides a detailed

explanation and visualizes the values of this noise process sequence.) The aim is to derive the

upper bound for E∥ft−gt∥2γ , to do this, the noise process r
(k)
t decomposes ft−gt with a finite sum.

Recalling (E.3) and (E.4), we have

f0 − g0 = 0, ft − gt = (I − νt(Lt + λtI))(ft−1 − gt−1) + νt(LK − Lt)gt−1. (E.15)

This iteration of ft− gt involves the stochastic operator Lt, which is hard to handle. Therefore, we

replace Lt with its expectation LK and consider the iteration

r
(0)
0 = 0, r

(0)
t = (I − νt(LK + λtI))r

(0)
t−1 + νt(LK − Lt)gt−1.

Then r
(0)
t is the semi-stochastic population iteration of ft − gt, and we can decompose ft − gt as

ft − gt = (ft − gt − r(0)t ) + r
(0)
t .

Note that first term ft − gt − r(0)t has the same recursion structure as (E.15)

f0 − g0 − r(0)0 = 0, ft − gt − r(0)t = (I − νt(Lt + λtI))(ft−1 − gt−1 − r(0)t−1) + νt(LK − Lt)r
(0)
t−1.

Again, we consider the semi-stochastic population iteration for f0 − g0 − r(0)0 and define r
(1)
t . We

obtain the error decomposition for ft − gt as follows

ft − gt = (ft − gt − r(0)t − r
(1)
t ) + r

(0)
t + r

(1)
t .

Moreover, we can repeat this procedure and yield the sequence {r(k)t }k∈N0 , the corresponding error

decomposition would be

ft − gt = (ft − gt −
k∑

j=0

r
(j)
t ) +

k∑
j=0

r
(j)
t .

51



Remark E.10. The noise process {r(k)t }k∈N0 plays a key role in the following proof, Lemma F.2

shows that ft − gt can be decomposed as a finite sum of the noise process, i.e.

ft − gt =
(t−1)∨0∑
j=0

r
(j)
t .

Using Minkowski’s inequality, (E∥ft−gt∥2γ)1/2 ≤
∑t−1

j=0(E∥r
(j)
t ∥2γ)1/2. Therefore, to derive the upper

bound for E∥ft − gt∥2γ , it is sufficient to derive the γ-norm bound for r
(k)
t (Lemma E.12).

Lemma E.11. Suppose that the assumptions of Lemma E.6 hold. If
√
2θ − 1(t0 + 2)/(t0 +

1)aκ2−γA < 1, for all iteration t, the inequality holds

E∥ft − gt∥2γ ≲ O(t1−2θ). (E.16)

Proof. WLOG, suppose t is sufficient large (t > ⌊ 2
2θ−1⌋). Using Lemma F.2, ft − gt is a finite sum

of the noise process

ft − gt =
t−1∑
k=0

r
(k)
t .

Using Minkowski’s inequality, we have

(E∥ft − gt∥2γ)1/2 ≤
t−1∑
k=0

(E∥r(k)t ∥2γ)1/2 (E.17)

We make use of the following lemma, which provides the upper bounds for E∥r(k)t ∥2γ .

Lemma E.12. Suppose that the assumptions of Lemma E.6 hold. For any iteration t, the inequal-

ity holds

E∥r(k)t ∥2γ ≤


Ck(t+ 1)(k+1)(1−2θ), k < ⌊ 2

2θ − 1
⌋,

Ck(t+ 1)−2, k ≥ ⌊ 2

2θ − 1
⌋.

(E.18)

where Ck is a constant:

Ck =


2M

(
t0 + 2

t0 + 1
aκ2−γA

)2(k+1) k∏
i=0

(2 + (i+ 1)(1− 2θ))−1, k < ⌊ 2

2θ − 1
⌋,

2M

(
t0 + 2

t0 + 1
aκ2−γA

)2(k+1)

(2θ − 1)k−⌊ 2
2θ−1

⌋
⌊ 2
2θ−1

⌋∏
i=0

|(2 + (i+ 1)(1− 2θ))−1|, k ≥ ⌊ 2

2θ − 1
⌋.

(E.19)

Proof. See Appendix F.5 for the proof of this claim.

Remark E.13. (Intuitive explanation of Ck).
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• If we fix the iteration t and increase k. Lemma E.12 shows that

Ck+1 =

(
t0 + 2

t0 + 1
aκ2−γA

)2

(2 + (k + 1)(1− 2θ))−1Ck, k < ⌊ 2

2θ − 1
⌋,

Ck+1 =

(
t0 + 2

t0 + 1
aκ2−γA

)2

(2θ − 1)Ck, k ≥ ⌊ 2

2θ − 1
⌋,

which implies that when k is sufficient large, Ck is roughly a geometric sequence with ratio

((t0 + 2)(t0 + 1)aκ2−γA)2(2θ − 1). Moreover, if this ratio is smaller than 1, the sum of the

geometric sequence is always finite.

• If we fix k and increase the iteration t. Lemma E.12 shows that when k < ⌊ 2
2θ−1⌋, the

convergence rate of E∥r(k)t ∥2γ is O(t(k+1)(1−2θ)). Then if k increases (and k < ⌊ 2
2θ−1⌋), the

convergence rate (k+1)(1− 2θ) increases linearly with k. When k ≥ ⌊ 2
2θ−1⌋, the convergence

is fixed as O(t−2) and unrelated with k. This indicates that the convergence rate for the

{E∥r(k)t ∥2γ}k∈N0 is saturated at O(t−2) when k ≥ ⌊ 2
2θ−1⌋.

Plugging Lemma E.12 into (E.17), we obtain

t−1∑
k=0

(E∥r(k)t ∥2γ)1/2 ≤
⌊ 2
2θ−1

⌋−1∑
k=0

(Ck(t+ 1 + t0)
(k+1)(1−2θ))1/2 +

t−1∑
k=⌊ 2

2θ−1
⌋

(Ck(t+ 1 + t0)
−2)1/2

(a)

≤

(
t−1∑
k=0

C
1/2
k

)
(t+ 1 + t0)

(1−2θ)/2.

(E.20)

where (a) uses the fact that (t + 1 + t0)
(k+1)(1−2θ) ≤ (t + 1 + t0)

−2)1/2 when k < ⌊ 2
2θ−1⌋. Given

(E.19), the last step of the proof is showing that
∑t−1

k=0C
1/2
k is uniformly bounded. Recalling the

definition of constants Ck , we have

t−1∑
k=0

C
1/2
k =

⌊ 2
2θ−1

⌋−1∑
k=0

√√√√2M

(
t0 + 2

t0 + 1
aκ2−γA

)2(k+1) k∏
i=0

(2 + (i+ 1)(1− 2θ))−1

+

t−1∑
k=⌊ 2

2θ−1
⌋

√√√√√2M

(
t0 + 2

t0 + 1
aκ2−γA

)2(k+1)

(2θ − 1)k−⌊ 2
2θ−1

⌋
⌊ 2
2θ−1

⌋∏
i=0

(2 + (i+ 1)(1− 2θ))−1

≤

√√√√√2M(2θ − 1)−⌊ 2
2θ−1

⌋−1

⌊ 2
2θ−1

⌋∏
i=0

|(2 + (i+ 1)(1− 2θ))−1|

︸ ︷︷ ︸
:=E

t−1∑
k=0

(
t0 + 2

t0 + 1
aκ2−γA

√
2θ − 1

)k+1

.

(E.21)

Note that (t0 + 2)/(t0 + 1)aκ2−γA
√
2θ − 1 < 1. Then the summation of geometric sequence
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∑t−1
k=0

(
(t0 + 2)/(t0 + 1)aκ2−γA

√
2θ − 1

)k+1
is uniformly bounded. We obtain

t−1∑
k=0

C
1/2
k =

E( t0+2
t0+1aκ

2−γA
√
2θ − 1)(1− ( t0+2

t0+1aκ
2−γA

√
2θ − 1)t−1)

1− t0+2
t0+1aκ

2−γA
√
2θ − 1

≤
E t0+2

t0+1aκ
2−γA

√
2θ − 1

1− t0+2
t0+1aκ

2−γA
√
2θ − 1

(E.22)

Combining (E.17), (E.20), and (E.22), we have

E∥ft − gt∥2γ ≤

(
E t0+2

t0+1aκ
2−γA

√
2θ − 1

1− t0+2
t0+1aκ

2−γA
√
2θ − 1

)2

(t+ 1 + t0)
1−2θ ≲ O(t1−2θ).

Putting Lemma E.4, Lemma E.6, and Lemma E.11 together, we finish the proof for Lemma

4.18. Recalling the basic decomposition (Lemma E.2),

(E∥ft − f∥2γ)1/2 ≤ ∥f − fλt∥γ + (E∥fλt − gt∥2γ)1/2 + (E∥gt − ft∥2γ)1/2.

Lemma E.4, Lemma E.6, and Lemma E.11 provide the upper bounds for the three terms in this

inequality, respectively. Therefore, we obtain

(E∥ft − f∥2γ)1/2 ≤ O
(
t−(1−θ)(β−γ−2)/2

)
+O

(
t−((1−θ)(β−γ)∧(2θ−1))/2

)
+O(t(1−2θ)/2)

= O
(
t−((1−θ)(β−γ)∧(2θ−1))/2

)
.

(E.23)

To get the best convergence rate, let (1− θ)(β − γ) = 2θ − 1, i.e. set θ = (β − γ + 1)/(β − γ + 2).

Plugging this value into (E.23), we have

E∥ft − f∥2γ ≲ O
(
t
− β−γ

β−γ+2

)
.

E.2 Proof of Lemma C.1

Similar to the proof of Lemma 4.11, we use Lemma B.2 to derive the one-step error bound and it

is sufficient to check that the estimator for the gradient H(x) satisfies Assumption B.1. Recalling

Algorithm 2, the gradient estimator at iteration t is

ht = (∇iℓi(x
t, zti) + ⟨f ti , ∂iKxt⟩H∇ziℓi(x

t, zti))i∈[n]. (E.24)

Recalling (2.7), the true gradient is

H(xt) = (∇iLi(xt))i∈[n] = (Et

[
∇iℓi(x

t, zti) + ∂ifi(x
t)∇ziℓi(x

t, zti)
]
)i∈[n], (E.25)

We remark that {(xj , uji , y
j
i , z

j
i )}i∈[n],j∈[t−1] and (uti, y

t
i) are deterministic with respect to the con-

ditional expectation Et[·] (recalling the definition in Lemma C.1), therefore, this expectation is

equivalent to Ezti∼Di(xt)[·].
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The source condition (Assumption 4.13) implies that for any i ∈ [n], fi ∈
(
Hβ
)p
. Therefore,

for any γ < β, using the fact that Hβ ⊂ Hγ , we have fi ∈ (Hγ)p. Moreover, let Kγ be the kernel

associated with the RKHS Hγ , the reproducing property of Hγ implies that fi(x
t) = ⟨fi,Kγ

xt⟩γ .
Thus, ∂ifi(x

t) = ⟨fi, ∂iKγ
xt⟩γ = ⟨fi, ∂iϕγxt⟩γ and we can rewrite the true gradient (E.25) as follow

H(xt) = (Et

[
∇iℓi(x

t, zti) + ⟨fi, ∂iϕ
γ
xt⟩γ∇ziℓi(x

t, zti)
]
)i∈[n]. (E.26)

Besides, since f ti ∈ (H)p and γ ≤ 1, we have f ti ∈ (Hγ)p and ⟨f ti , ∂iKxt⟩H = ∂if
t
i (x

t) = ⟨f ti , ∂
γ
i Kxt⟩γ =

⟨f ti , ∂iϕ
γ
xt⟩γ . Rewrite the gradient estimator (E.24)

ht = (∇iℓi(x
t, zti) + ⟨f ti , ∂iϕ

γ
xt⟩γ∇ziℓi(x

t, zti))i∈[n]. (E.27)

Now let us check that the gradient estimator ht satisfies the Assumption B.1. We compute the

bias term and variance term, respectively.

• Bias.

Using (E.26) and (E.27), we have

∥Eth
t −H(xt)∥2 = ∥(Et

[
(⟨f ti , ∂iϕ

γ
xt⟩γ − ⟨fi, ∂iϕγxt⟩γ)∇ziℓi(x

t, zti)
]
)i∈[n]∥2

=

n∑
i=1

∥Et

[
⟨f ti − fi, ∂iϕ

γ
xt⟩γ∇ziℓi(x

t, zti)
]
∥2.

Note that f ti is deterministic with the filtration Gt, then

Et

[
⟨f ti − fi, ∂iϕ

γ
xt⟩γ∇ziℓi(x

t, zti)
]
= ⟨f ti − fi, ∂iϕ

γ
xt⟩γEt∇ziℓi(x

t, zti).

Plugging in this equation, we obtain

∥Eth
t −H(xt)∥2 =

n∑
i=1

∥⟨f ti − fi, ∂iϕ
γ
xt⟩γEt∇ziℓi(x

t, zti)∥2

≤
n∑

i=1

∥f ti − fi∥2γ∥∂iϕ
γ
xt∥2γ∥Et∇ziℓi(x

t, zti)∥2.

Assumption 4.15 implies that ∥∂iϕγx∥2γ are uniformly bounded by ξ2, therefore

∥Eth
t −H(xt)∥2 ≤ ξ2 sup

i∈[n]
∥f ti − fi∥2γ

n∑
i=1

∥Et∇ziℓi(x
t, zti)∥2

(a)

≤

(
ξ sup
i∈[n]
∥f ti − fi∥γ∥Et(∇ziℓi(x

t, zti))i∈[n]∥

)2

,

where (a) uses that
∑n

i=1∥Et∇ziℓi(x
t, zti)∥2 = ∥Et(∇ziℓi(x

t, zti))i∈[n]∥2. Moreover, Assumption 4.3

implies that ∥Et(∇ziℓi(x
t, zti))i∈[n]∥ ≤ δ. Plugging in this inequality, we obtain

∥Eth
t −H(xt)∥ ≤ ξδ sup

i∈[n]
∥f ti − fi∥γ . (E.28)

Comparing (E.28) with (B.3), we have mt = ξδ supi∈[n]∥f ti − fi∥γ and U = 0.
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• Variance.

Recalling (E.27), let At := (∇iℓi(x
t, zti))i∈[n] and Bt := (⟨f ti , ∂iϕ

γ
xt⟩γ∇ziℓi(x

t, zti))i∈[n], then ht =

At +Bt. We compute the variance of ht

Et∥ht − Eth
t∥2 = Et∥(At − EtA

t) + (Bt − EtB
t)∥2

≤ 2
(
Et∥At − EtA

t∥2 + Et∥Bt − EtB
t∥2
)
.

(E.29)

Now we derive the upper bounds for last the two terms of (E.29), respectively.

Upper bound of Et∥At − EtA
t∥2. By the definition of At,

Et∥At − EtA
t∥2 = Et∥(∇iℓi(x

t, zti)− Et∇iℓi(x
t, zti))i∈[n]∥2.

Then Assumption 4.4 implies that

Et∥At − EtA
t∥2 ≤ ζ2. (E.30)

Upper bound of Et∥Bt − EtB
t∥2. By the definition of Bt, we have

Et∥Bt − EtB
t∥2 = Et∥(⟨f ti , ∂iϕ

γ
xt⟩γ

[
∇ziℓi(x

t, zti)− Et∇ziℓi(x
t, zti)

]
)i∈[n]∥2

≤ ∥f ti ∥2γ∥∂iϕ
γ
xt∥2γEt∥(

[
∇ziℓi(x

t, zti)− Et∇ziℓi(x
t, zti)

]
)i∈[n]∥2.

Again, Assumption 4.4 implies that

Et∥(
[
∇ziℓi(x

t, zti)− Et∇ziℓi(x
t, zti)

]
)i∈[n]∥2 ≤ ζ2.

Moreover, Assumption 4.15 implies that ∥∂iϕγxt∥2γ ≤ ξ2. Therefore, we obtain

Et∥Bt − EtB
t∥2 ≤ ξ2ζ2 sup

i∈[n]
∥f ti ∥2γ . (E.31)

Plugging (E.30) and (E.31) into (E.29), we have

Et∥ht − Eth
t∥2 ≤ 2ζ2(1 + ξ2 sup

i∈[n]
∥f ti ∥2γ). (E.32)

Comparing this inequality with (B.3), we have σ2t = 2ζ2(1 + ξ2 supi∈[n]∥f ti ∥2γ) and V = 0.

Now we have proved that the stochastic gradient estimator ht satisfies the stochastic framework

(Assumption B.1) with U = V = 0, mt = ξδ supi∈[n]∥f ti − fi∥γ , and σ2t = 2ζ2(1 + ξ2 supi∈[n]∥f ti ∥2γ).
Using Lemma B.2, we obtain the one-step error

Et∥xt+1 − x∗∥2 ≤ 1

1 + ηtτ
∥xt − x∗∥2 +

4η2t ζ
2(1 + ξ2 supi∈[n]∥f ti ∥2γ)

1 + ηtτ
+

2ηtξ
2δ2 supi∈[n]∥f ti − fi∥2γ

τ(1 + ηtτ)
.

(E.33)
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F Omitted Proofs in Lemma 4.18

F.1 Proof of Lemma E.5

To begin with, we derive the spectral representation of f , fλ, and use these representations to

derive the upper bound for ∥f − fλ∥2γ .

• Spectral representation of f .

Let {µβ/2i ei}i∈N be an orthogonal basis of Hβ, the source condition implies that f ∈ Hβ. Therefore,

we assume that

f =
∞∑
i=1

aiµ
β/2
i ei, {ai}∞i=1 ∈ ℓ2. (F.1)

• Spectral representation of LK .

Using the spectral representation of the integral operator (B.5), we have

LK =
∞∑
i=1

µ
1/2
i ⟨ei, ·⟩Lρ2X

µ
1/2
i ei =

∞∑
i=1

µi⟨µ1/2i ei, ·⟩Hµ1/2i ei,

(LK + λI)−1 =
∞∑
i=1

(µi + λ)−1⟨µ1/2i ei, ·⟩Hµ1/2i ei,

(F.2)

where ∥·∥ρX is the norm on L2ρX induced by the measure ρX . Note that {µ1/2i ei}i∈N is an orthogonal

basis of H and {ei}i∈N is an orthogonal basis of L2ρX , thus, ⟨ei, ej⟩L2
ρX

= ⟨µ1/2i ei, µ
1/2
j ej⟩H = δij .

• Spectral representation of fλ.

Recalling that fλ = (LK + λI)−1LKf . Using (F.1) and the first equation in (F.2), we have

LKf =
∞∑
i=1

µ
1/2
i ⟨ei, f⟩Lρ2X

µ
1/2
i ei

=
∞∑
i=1

µ
1/2
i ⟨ei,

∞∑
j=1

ajµ
β/2
j ej⟩L

ρ2X
µ
1/2
i ei

(a)
=

∞∑
i=1

µ
1/2
i ⟨ei, aiµ

β/2
i ei⟩L

ρ2X
µ
1/2
i ei

(b)
=

∞∑
i=1

aiµ
(1+β)/2
i µ

1/2
i ei,

(F.3)

where (a) uses the fact that ⟨ei, ej⟩L2
ρX

= δij . Now plugging in the spectral representation of

(LK + λI)−1 (i.e. the second equation of (F.2)), we have

fλ = (LK + λI)−1LKf = (LK + λI)−1
∞∑
i=1

aiµ
(1+β)/2
i µ

1/2
i ei

=

∞∑
i=1

(µi + λ)−1⟨µ1/2i ei,

∞∑
j=1

ajµ
(1+β)/2
j µ

1/2
j ej⟩Hµ1/2i ei.
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Using the fact that ⟨µ1/2i ei, µ
1/2
i ej⟩H = δij , we obtain the spectral decomposition for fλ

fλ =
∞∑
i=1

(µi + λ)−1⟨µ1/2i ei, aiµ
(1+β)/2
i µ

1/2
i ei⟩Hµ1/2i ei

=
∞∑
i=1

(µi + λ)−1aiµ
(1+β)/2
i µ

1/2
i ei

=
∞∑
i=1

µ
(1+β)/2
i

µi + λ
aiµ

1/2
i ei.

(F.4)

Combining (F.1) and (F.4), we obtain

f − fλ =
∞∑
i=1

(
µ
β/2
i −

µ
(1+β)/2
i

µi + λ
µ
1/2
i

)
aiei =

∞∑
i=1

(
1− µi

µi + λ

)
aiµ

β/2
i ei

=
∞∑
i=1

λ

µi + λ
aiµ

β/2
i ei.

(F.5)

Therefore, the γ-norm has the following expression

∥f − fλ∥2γ = ∥
∞∑
i=1

λ

µi + λ
aiµ

β/2
i ei∥2γ = ∥

∞∑
i=1

λ

µi + λ
µ
(β−γ)/2
i aiµ

γ/2
i ei∥2γ

(a)
=

∞∑
i=1

(
λ

µi + λ
µ
(β−γ)/2
i ai

)2

,

where (a) uses the fact that {µγ/2i ei}i∈N is an orthogonal basis of the γ-pwoer space Hγ (which

further indicates ⟨µγ/2i ei, µ
γ/2
j ej⟩γ = δij). Given the equation above, we obtain the following bound

∥f − fλ∥2γ =
∞∑
i=1

(
λ

µi + λ
µ
(β−γ)/2
i ai

)2

≤ λ2 sup
i∈N

(
µ
(β−γ)/2
i

µi + λ

)2 ∞∑
i=1

a2i

= λ2 sup
i∈N

(
µ
(β−γ)/2
i

µi + λ

)2

∥f∥2β.

(F.6)

We compute the last equation of (F.6), define function h(x) = xβ−γ/(x + λ)2, for all x ∈ R+, we

have

h′(x) =
xβ−γ−1((β − γ)(x+ λ)− 2x)

(x+ λ)3
.

Therefore, h(x) takes the maximum at x = (β − γ)λ/(2 − β + γ). Plugging in this maximum, we

obtain

∥f − fλ∥2γ ≤ λ2 sup
x∈R

(
x(β−γ)/2

x+ λ

)2

∥f∥2β = λ2 sup
x∈R

h(x)∥f∥2β

≤ (β − γ)β−γ(2− β + γ)2−β+γ

4
∥f∥2βλβ−γ .
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F.2 Proof of Lemma E.7

The aim is to derive the upper bound for ∥Πt
1(g0 − fλ0)∥2γ . Recalling the definition of iteration gt

(E.4), we have g0 = f0, therefore

∥Πt
1(g0 − fλ0)∥2γ = ∥Πt

1(f0 − fλ0)∥2γ .

Using Lemma G.2, we have

∥Πt
1(f0 − fλ0)∥2γ = ∥L(1−γ)/2

K Πt
1(f0 − fλ0)∥2H. (F.7)

Note that the operator Πt
1 =

∏t
i=1(I − νi(LK + λiI)) is the product of linear combinations of the

integral operator LK and the identity operator I. Therefore, operator Πt
1 is commutative with

operator L
(1−γ)/2
K , thus, we can rewrite (F.7)

∥Πt
1(f0 − fλ0)∥2γ = ∥L(1−γ)/2

K Πt
1(f0 − fλ0)∥2H = ∥Πt

1L
(1−γ)/2
K (f0 − fλ0)∥2H

≤ ∥Πt
1∥2H→H∥L

(1−γ)/2
K (f0 − fλ0)∥2H,

where ∥Πt
1∥2H→H is the spectral norm of the operator Πt

1. Using Lemma G.3 (all the assumptions

of Lemma G.3 are satisfied, since t0 ≥ (aκ2 + 1)2 and θ ∈ (1/2, 1]), this spectral norm satisfies the

inequality

∥Πt
1∥2H→H ≤

t∏
i=1

(1− νiλi)2.

Plugging in this inequality, we obtain

∥Πt
1(g0 − fλ0)∥2γ ≤ ∥Πt

1∥2H→H∥L
(1−γ)/2
K (f0 − fλ0)∥2H ≤

t∏
i=1

(1− νiλi)2∥f0 − fλ0∥2γ .

Note that we set νi = a(i+ t0)
−θ and λi = 1/(a(i+ t0)

1−θ), therefore,

∥Πt
1(g0 − fλ0)∥2γ ≤

t∏
i=1

(1− (i+ t0)
−1)2∥f0 − fλ0∥2γ =

t∏
i=1

(
i+ t0 − 1

i+ t0

)2

∥f0 − fλ0∥2γ

=

(
t0

t+ t0

)2

∥f0 − fλ0∥2γ ≲ O(t−2).

F.3 Proof of Lemma E.8

The aim is to derive the upper bound for E∥
∑t

i=1 νiΠ
t
i+1(yiϕi − LKf)∥2γ . Define ωi = yiϕi − LKf ,

then we have

E∥
t∑

i=1

νiΠ
t
i+1(yiϕi − LKf)∥2γ = E∥

t∑
i=1

νiΠ
t
i+1ωi∥2γ = E

t∑
i,j=1

⟨νiΠt
i+1ωi, νjΠ

t
j+1ωj⟩γ

= E
t∑

i=1

∥νiΠt
i+1ωi∥2γ + 2E

∑
i<j

⟨νiΠt
i+1ωi, νjΠ

t
j+1ωj⟩γ .

(F.8)
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Let F = {Ft}t∈N be the filtration Ft = σ{{xj}j∈[t]} and define Et = E[·|Ft]. Since ui
i.i.d∼ ρX and

yi ∼ D(ui), for any i ∈ N, the following equation holds

Ei−1ωi = E[ωi|Fi−1] = E[yiϕi − LKf |Fi−1] = 0, (F.9)

here we use the fact that

E[yiϕi − LKf |Fi−1]
(a)
= E[(f(ui) + ϵi)ϕi − LKf |Fi−1]

(b)
= E[f(ui)ϕi − LKf |Fi−1],

where (a) is guaranteed by the parametric assumption (Assumption 4.13) and (b) is induced by

the following equation (recalling the definition of LK in Appendix B.2)

Eui∼ρX f(ui)ϕi(x) =

∫
X
K(ui, x)f(ui)dρX (ui) = LK(f)(x), ∀x ∈ X .

Equation (F.9) shows that {ωi}i∈N is a martingale difference sequence with filtration F . Therefore,
using the tower rule, for any i < j the second term in (F.8) is zero

E⟨νiΠt
i+1ωi, νjΠ

t
j+1ωj⟩γ = E

[
E
[
⟨νiΠt

i+1ωi, νjΠ
t
j+1ωj⟩γ

∣∣∣∣Fj−1

]]
= E

[
⟨νiΠt

i+1ωi,Ej−1[νjΠ
t
j+1ωj ]⟩γ

]
= E

[
⟨νiΠt

i+1ωi, 0⟩γ
]
= 0.

(F.10)

Combining (F.8) and (F.10), we obtain

E∥
t∑

i=1

νiΠ
t
i+1(yiϕi − LKf)∥2γ = E

t∑
i=1

∥νiΠt
i+1ωi∥2γ . (F.11)

Moreover, for any i, t ∈ N and i ≤ t, using Lemma G.2, we have

E∥νiΠt
i+1ωi∥2γ = E∥L(1−γ)/2

K νiΠ
t
i+1ωi∥2H = E∥νiΠt

i+1L
(1−γ)/2
K ωi∥2H

≤ ν2i ∥Πt
i+1∥2H→HE∥L

(1−γ)/2
K ωi∥2H.

Applying Lemma G.3 to ∥Πt
i+1∥2H→H, we obtain

E∥νiΠt
i+1ωi∥2γ ≤ ν2i

t∏
j=i+1

(1− νjλj)2E∥ωi∥2γ = ν2i

t∏
j=i+1

(
j + t0 − 1

j + t0

)2

E∥ωi∥2γ

= ν2i

(
i+ t0
t+ t0

)2

E∥ωi∥2γ .

(F.12)

Combine (F.11) and (F.12), we obtain

E∥
t∑

i=1

νiΠ
t
i+1(yiϕi − LKf)∥2γ ≤

t∑
i=1

ν2i

(
i+ t0
t+ t0

)2

E∥ωi∥2γ . (F.13)

Let us derive the upper bound for the last term of (F.13). We are going to prove that ωi has a

uniform bound under the γ-norm and derive the upper bound for
∑t

i=1 ν
2
i ((i+ t0)/(t+ t0))

2.
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• Uniform bound of E∥ωi∥2γ.

For any random variable z in a Hilbert space with norm ∥·∥, it is well known that Var(z) ≤ E∥z∥2,
therefore

E∥ωi∥2γ = E∥yiϕi − LKf∥2γ = Var(yiϕi) ≤ E∥yiϕi∥2γ .

Using Lemma G.5, we have

E∥ωi∥2γ ≤ E∥yiϕi∥2γ ≤ κ2(2−γ)(A2∥f∥2β + σ2). (F.14)

• Upper bound of
∑t

i=1 ν
2
i ((i+ t0)/(t+ t0))

2.

t∑
i=1

ν2i

(
i+ t0
t+ t0

)2

=
t∑

i=1

a2(i+ t0)
−2θ

(
i+ t0
t+ t0

)2

= a2(t+ t0)
−2

t∑
i=1

(i+ t0)
2−2θ

≤ a2(t+ t0)
−2

t∑
i=1

∫ i+1

i
(x+ t0)

2−2θdx ≤ a2(t+ t0)
−2

∫ t+1

1
(x+ t0)

2−2θdx

(F.15)

Calculating the last term of (F.15):

(t+ t0)
−2

∫ t+1

1
(x+ t0)

2−2θdx =
1

3− 2θ
(t+ t0)

−2
(
(t+ t0 + 1)3−2θ − (t0 + 1)3−2θ

)
≤ 1

3− 2θ
(t+ t0)

−2(t+ t0 + 1)3−2θ ≤ (t0 + 2)3−2θ

(3− 2θ)(t0 + 1)2−2θ
(t+ t0)

1−2θ.

(F.16)

Combining (F.13), (F.14), (F.15), and (F.16), we obtain

E∥
t∑

i=1

νiΠ
t
i+1(yiϕi − LKf)∥2γ ≤ a2κ2(2−γ)(A2∥f∥2β + σ2)

(t0 + 2)3−2θ

(3− 2θ)(t0 + 1)2−2θ
(t+ t0)

1−2θ

≲ O(t1−2θ).

F.4 Proof of Lemma E.9

The aim is to derive the upper bound for ∥
∑t

i=1Π
t
i(fλi

− fλi−1
)∥2γ . Using Lemma G.2 and Lemma

G.3, we have

∥
t∑

i=1

Πt
i(fλi

− fλi−1
)∥γ = ∥L(1−γ)/2

K

t∑
i=1

Πt
i(fλi

− fλi−1
)∥H = ∥

t∑
i=1

Πt
iL

(1−γ)/2
K (fλi

− fλi−1
)∥H

≤
t∑

i=1

∥Πt
i∥H→H∥L(1−γ)/2

K (fλi
− fλi−1

)∥H

≤
t∑

i=1

t∏
j=i

(1− νjλj)∥L(1−γ)/2
K (fλi

− fλi−1
)∥H.

(F.17)

We first derive the upper bound of ∥L(1−γ)/2
K (fλi

− fλi−1
)∥H and then obtain the upper bound for

the last term of (F.17), i.e.
∑t

i=1

∏t
j=i(1− νjλj)∥L

(1−γ)/2
K (fλi

− fλi−1
)∥H.
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• Upper bound of ∥L(1−γ)/2
K (fλi

− fλi−1
)∥H.

The same as the proof of Lemma E.5, let us derive the spectral representation for L
(1−γ)/2
K (fλi

−
fλi−1

). Suppose f =
∑∞

i=1 aiµ
β/2
i ei. Using (F.2), we have

fλi
= (LK + λiI)

−1LKf =
∞∑
j=1

µ
(1+β)/2
j

µj + λi
ajµ

1/2
j ej .

Thus,

fλi
− fλi−1

=

∞∑
j=1

µ
(1+β)/2
j

µj + λi
ajµ

1/2
j ej −

∞∑
j=1

µ
(1+β)/2
j

µj + λi−1
ajµ

1/2
j ej

=

∞∑
j=1

µ
(1+β)/2
j (λi−1 − λi)

(µj + λi)(µj + λi−1)
ajµ

1/2
j ej .

Using the fact that L
(1−γ)/2
K ei = µ

(1−γ)/2
i ei, we obtain

L
(1−γ)/2
K (fλi

− fλi−1
) =

∞∑
j=1

µ
(1−γ)/2
i

µ
(1+β)/2
j (λi−1 − λi)

(µj + λi)(µj + λi−1)
ajµ

1/2
j ej . (F.18)

Therefore, using the spectral representation (F.18) and the fact that ⟨µ1/2i ei, µ
1/2
j ej⟩H = δij , we

obtain the spectral representation of ∥L(1−γ)/2
K (fλi

− fλi−1
)∥2H:

∥L(1−γ)/2
K (fλi

− fλi−1
)∥2H = ∥

∞∑
j=1

µ
(1−γ)/2
i

µ
(1+β)/2
j (λi−1 − λi)

(µj + λi)(µj + λi−1)
ajµ

1/2
j ej∥2H

=

∞∑
j=1

(
µ
(2−γ+β)/2
j (λi−1 − λi)
(µj + λi)(µj + λi−1)

)2

a2j ≤ sup
j∈N

(
µ
(2−γ+β)/2
j (λi−1 − λi)
(µj + λi)(µj + λi−1)

)2 ∞∑
j=1

a2j

= sup
j∈N

µ2−γ+β
j (λi−1 − λi)2

(µj + λi)2(µj + λi−1)2
∥f∥2β.

Recalling that λi = 1/(a(i+ t0)
1−θ), we have λi ≤ λi−1 and

∥L(1−γ)/2
K (fλi

− fλi−1
)∥2H = sup

j∈N

µ2−γ+β
j (λi−1 − λi)2

(µj + λi)2(µj + λi−1)2
∥f∥2β ≤ sup

j∈N

µ2−γ+β
j (λi−1 − λi)2

(µj + λi)4
∥f∥2β.

(F.19)

To upper bound the last term of (F.19), define function h(x) = x2−γ+β(λi−1 − λi)2/(x + λi)
4, for

all x ∈ R+, we have

h′(x) =
x1−γ+β((2− γ + β)(x+ λ)− 4x)

(x+ λi)5
.
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Therefore, h(x) takes the maximum at x = λi(2 − γ + β)/(2 + γ − β). Combining this maximum

with (F.19), we obtain

∥L(1−γ)/2
K (fλi

− fλi−1
)∥2H ≤ sup

j∈N

µ2−γ+β
j (λi−1 − λi)2

(µj + λi)4
∥f∥2β

≤ (2− γ + β)2−γ+β(2 + γ − β)2+γ−β

256
∥f∥2βλ

β−γ−2
i (λi−1 − λi)2.

(F.20)

Since λi = 1/(a(i+ t0)
1−θ), we have

λβ−γ−2
i (λi−1 − λi)2 = aγ−β(i+ t0)

−(1−θ)(β−γ−2)((i− 1 + t0)
−(1−θ) − (i+ t0)

−(1−θ))2. (F.21)

• Upper bound of
∑t

i=1

∏t
j=i(1− νjλj)∥L

(1−γ)/2
K (fλi

− fλi−1
)∥H.

Now let us find derive the upper bound for the last term of (F.17). Using (F.20), we have

t∑
i=1

t∏
j=i

(1− νjλj)∥L(1−γ)/2
K (fλi

− fλi−1
)∥H ≤

t∑
i=1

t∏
j=i

(1− νjλj)

√√√√sup
j∈N

µ2−γ+β
j (λi−1 − λi)2

(µj + λi)4
∥f∥2β

≤
√

(2− γ + β)2−γ+β(2 + γ − β)2+γ−β

256
∥f∥2β

t∑
i=1

t∏
j=i

(1− νjλj)λ(β−γ−2)2
i (λi−1 − λi).

Plugging (F.21) into the last inequality above, we obtain

t∑
i=1

t∏
j=i

(1− νjλj)∥L(1−γ)/2
K (fλi

− fλi−1
)∥H

≤ C
t∑

i=1

t∏
j=i

(1− (j + t0)
−1)(i+ t0)

−(1−θ)(β−γ−2)/2((i− 1 + t0)
−(1−θ) − (i+ t0)

−(1−θ))︸ ︷︷ ︸
(I)

,

(F.22)

where C =
√

(2−γ+β)2−γ+β(2+γ−β)2+γ−β

256aβ−γ ∥f∥2β is a constant.

• Upper bound of (I)

By some calculation, we obtain the following inequality of (I)

(I) =
t∑

i=1

(
i− 1 + t0
t+ t0

)
(i+ t0)

−(1−θ)(β−γ−2)/2((i− 1 + t0)
−(1−θ) − (i+ t0)

−(1−θ))

≤ (1− θ)
t∑

i=1

(i+ t0)
1−(1−θ)(β−γ−2)/2

t+ t0

∫ i

i−1
(x+ t0)

−(1−θ)−1dx

≤ (1− θ)
t∑

i=1

(i+ t0)
−(1−θ)(β−γ−2)/2

t+ t0
.
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Since (i+ t0)
−(1−θ)(β−γ−2)/2 ≤

∫ i
i−1(x+ t0)

−(1−θ)(β−γ−2)/2dx, we have

(I) ≤ (1− θ)
t∑

i=1

∫ i
i−1(x+ t0)

−(1−θ)(β−γ−2)/2dx

t+ t0

≤ 2(1− θ)
2− (1− θ)(β − γ)

(t+ t0)
−(1−θ)(β−γ−2)/2.

Plugging this inequality into (F.22) and using (F.17), we obtain

∥
t∑

i=1

Πt
i(fλi

− fλi−1
)∥2γ ≤ C2 · (I)2 ≤

(
2(1− θ)C

2− (1− θ)(β − γ)

)2

(t+ t0)
−(1−θ)(β−γ)

≲ O(t−(1−θ)(β−γ)).

F.5 Proof of Lemma E.12

We use mathematical induction to derive the upper bound for E∥r(k)t ∥2γ . We start with r
(0)
t (Initial

case I) and use induction to derive the upper bound of r
(k)
t with k < ⌊ 2

2θ−1⌋ (Induction step I).

Then we consider the upper bound of r
(k)
t with k = ⌊ 2

2θ−1⌋ (Initial case II) and use induction to

derive the upper bound of r
(k)
t for all k > ⌊ 2

2θ−1⌋ (Induction step II).

• Initial case I: For k = 0.

Recalling (F.39), r
(0)
t can be rewritten as

r
(0)
t = (I − νt(LK + λtI))r

(0)
t−1 + νt(LK − Lt)gt−1

= Πt
1r

(0)
0 +

t∑
i=1

νiΠ
t
i+1(LK − Li)gi−1,

where Πj
i =

∏j
k=i(I − νk(LK + λkI)). Since r

(0)
0 = 0, we have

r
(0)
t =

t∑
i=1

νiΠ
t
i+1(LK − Li)gi−1.

Moreover, {(LK − Lt)gt−1}t∈N is a martingale difference sequence with filtration F = {Ft}t∈N,
where Ft = σ{{xj}j∈[t]}, because

Et(LK − Lt)gt−1 = E[(LK − Lt)gt−1|Ft−1] = E[(LK − Lt)|Ft−1]gt−1 = 0.

Therefore, E⟨(LK − Li)gi−1, (LK − Lj)gj−1⟩H = 0 for any i ̸= j. We further have

E∥r(0)t ∥2γ = E∥r(0)t ∥2γ = E∥
t∑

i=1

νiΠ
t
i+1(LK − Li)gi−1∥2γ

=

t∑
i=1

E∥νiΠt
i+1(LK − Li)gi−1∥2γ
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Using Lemma G.2 and commute L
(1−γ)/2
K with Πt

i+1, we obtain

E∥r(0)t ∥2γ =

t∑
i=1

E∥L(1−γ)/2
K νiΠ

t
i+1(LK − Li)gi−1∥2H

≤
t∑

i=1

Eν2i ∥Πt
i+1∥2H→H∥L

(1−γ)/2
K (LK − Li)gi−1∥2H

=
t∑

i=1

ν2i ∥Πt
i+1∥2H→HE∥(LK − Li)gi−1∥2γ .

(F.23)

Using the tower rule for thee expectation E∥(LK − Li)gi−1∥2γ , we have

E∥(LK − Li)gi−1∥2γ = E[E[∥(LK − Li)gi−1∥2γ |Fi−1]].

Since E[Ligi−1|Fi−1] = LKgi−1, the above expectation is actually a variance of Ligi−1, namely,

E[∥(LK−Li)gi−1∥2γ |Fi−1] = Var(Ligi−1|Fi−1). Using the fact that for any random variable z ∈ Hγ ,

Var(z) ≤ E∥z∥2γ , we obtain

E∥(LK − Li)gi−1∥2γ ≤ E∥Ligi−1∥2γ ≤ E[∥Li∥2Hγ→Hγ
∥gi−1∥2γ ]. (F.24)

Now we are going to derive the uniform upper bound for the spectral norm ∥Li∥2Hγ→Hγ
. For any

h ∈ Hγ , suppose h =
∑∞

j=1 ajµ
γ/2
j ej , we have

∥Li∥2Hγ→Hγ
= sup

h∈Hγ

∥Lih∥2γ
∥h∥2γ

= sup
{aj}∈ℓ2

h2(ui)∥ϕi∥2γ∑∞
j=1 a

2
j

= ∥ϕi∥2γ sup
{aj}∈ℓ2

(∑∞
j=1 ajµ

γ/2
j ej(ui)

)2∑∞
j=1 a

2
j

≤ ∥ϕi∥2γ sup
{aj}∈ℓ2

(∑∞
j=1 a

2
j

)(∑∞
j=1 µ

γ
j e

2
j (ui)

)
∑∞

j=1 a
2
j

= ∥ϕi∥2γ

 ∞∑
j=1

µγj e
2
j (ui)

 ,

Using Lemma G.4, we obtain the upper bound for the spectral norm ∥Li∥2Hγ→Hγ

∥Li∥2Hγ→Hγ
≤ ∥ϕi∥2γ

 ∞∑
j=1

µγj e
2
j (ui)

 ≤ κ4−2γA2 (F.25)

Combining (F.23), (F.24), and (F.25), we have

E∥r(0)t ∥2γ ≤ κ4−2γA2
t∑

i=1

ν2i ∥Πt
i+1∥2H→HE∥gi−1∥2γ .

Using the triangle inequality,

E∥r(0)t ∥2γ ≤ 2κ4−2γA2
t∑

i=1

ν2i ∥Πt
i+1∥2H→H

(
E∥gi−1 − fλi−1

∥2γ + ∥fλi−1
∥2γ
)

≤ 2κ4−2γA2
t∑

i=1

ν2i ∥Πt
i+1∥2H→H

(
E∥gi−1 − fλi−1

∥2γ + 2(∥fλi−1
− f∥2γ + ∥f∥2γ)

)
.

(F.26)
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Using Lemma E.4 and Lemma E.6, we have

E∥gi−1 − fλi−1
∥2γ ≲ O

(
i−((1−θ)(β−γ)∧(2θ−1))

)
, ∥fλi−1

− f∥2γ ≲ O
(
i−(1−θ)(β−γ)

)
.

Therefore, there exist a constant M > 0, such that

E∥gi−1 − fλi−1
∥2γ + 2(∥fλi−1

− f∥2γ + ∥f∥2γ) ≤M∥f∥2γ .

Plugging this inequality into (F.26) and using Lemma G.3, we obtain

E∥r(0)t ∥2γ ≤ 2κ4−2γA2M∥f∥2γ
t∑

i=1

ν2i ∥Πt
i+1∥2H→H ≤ 2κ4−2γA2M∥f∥2γ

t∑
i=1

ν2i

t∏
j=i+1

(1− νjλj)2

= 2κ4−2γA2M∥f∥2γ
t∑

i=1

a2(i+ t0)
−2θ

t∏
j=i+1

(1− (j + t0)
−1)2

= 2a2κ4−2γA2M∥f∥2γ
∑t

i=1(i+ t0)
2−2θ

(t+ t0)2
.

By some calculation, we obtain

E∥r(0)t ∥2γ ≤ 2a2κ4−2γA2M∥f∥2γ
∑t

i=1(i+ t0)
2−2θ

(t+ t0)2

≤ 2a2κ4−2γA2M∥f∥2γ

∫ t+1
1 (x+ t0)

2−2θdx

(t+ t0)2

≤ 2(t0 + 2)2

(3− 2θ)(t0 + 1)2
a2κ4−2γA2M∥f∥2γ(t+ 1 + t0)

1−2θ.

Therefore, the inequality (E.18) for the initial case (k = 0) holds.

• Induction step I: For k > 0 and k < ⌊ 2
2θ−1⌋.

Suppose the inequality for k − 1 holds, i.e.

E∥r(k−1)
t ∥2γ ≤ Ck−1(t+ 1 + t0)

k(1−2θ). (F.27)

Recalling the definition of r
(k)
t (F.40), we have r

(k)
0 = 0 and

r
(k)
t = (I − νt(LK + λtI))r

(k)
t−1 + νt(LK − Lt)r

(k−1)
t−1

= Πt
1r

(k)
0 +

t∑
i=1

νiΠ
t
i+1(LK − Li)r

(k−1)
i−1

=

t∑
i=1

νiΠ
t
i+1(LK − Li)r

(k−1)
i−1 .
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Again, {(LK − Lt)r
(k−1)
t−1 }t∈N is a martingale difference sequence with filtration F = {Ft}t∈N and

we can apply the same analysis on
∑t

i=1 νiΠ
t
i+1(LK −Li)r

(k−1)
i−1 as (F.23) and (F.24) of the Initial

case I.

E∥r(k)t ∥2γ =
t∑

i=1

E∥νiΠt
i+1(LK − Li)r

(k−1)
i−1 ∥

2
γ

≤
t∑

i=1

ν2i ∥Πt
i+1∥2H→HE∥(LK − Li)r

(k−1)
i−1 ∥

2
γ

≤
t∑

i=1

ν2i ∥Πt
i+1∥2H→HE∥Lir

(k−1)
i−1 ∥

2
γ

Using (F.25) and Lemma G.3, we have

E∥r(k)t ∥2γ ≤
t∑

i=1

ν2i ∥Πt
i+1∥2H→HE[∥Li∥2Hγ→Hγ

∥r(k−1)
i−1 ∥

2
γ ]

≤ κ4−2γA2
t∑

i=1

ν2i

t∏
j=i+1

(1− νjλj)2E∥r(k−1)
i−1 ∥

2
γ .

(F.28)

Plugging (F.27) into (F.28), we obtain

E∥r(k)t ∥2γ ≤ κ4−2γA2
t∑

i=1

ν2i

t∏
j=i+1

(1− νjλj)2Ck−1(i+ t0)
k(1−2θ)

= κ4−2γA2Ck−1

t∑
i=1

a2(i+ t0)
−2θ

t∏
j=i+1

(1− (j + t0)
−1)2(i+ t0)

k(1−2θ)

= a2κ4−2γA2Ck−1

∑t
i=1(i+ t0)

1+(k+1)(1−2θ)

(t+ t0)2
.

(F.29)

Condition 1◦: If k < ⌊ 1
2θ−1⌋, then 1 + (k + 1)(1− 2θ) ≥ 0, we have

t∑
i=1

(i+ t0)
1+(k+1)(1−2θ) ≤

t∑
i=1

∫ i+1

i
(x+ t0)

1+(k+1)(1−2θ)dx =

∫ t+1

1
(x+ t0)

1+(k+1)(1−2θ)dx

≤ (t+ 1 + t0)
2+(k+1)(1−2θ)

2 + (k + 1)(1− 2θ)
.

Combining this inequality with (F.29), we obtain

E∥r(k)t ∥2γ ≤ a2κ4−2γA2Ck−1

∑t
i=1(i+ t0)

1+(k+1)(1−2θ)

(t+ t0)2

≤ (t0 + 2)2

(2 + (k + 1)(1− 2θ))(t0 + 1)2
a2κ4−2γA2Ck−1(t+ 1 + t0)

(k+1)(1−2θ).

Thus, the inequality for r
(k)
t (E.18) holds for k > 0 and k < ⌊ 1

2θ−1⌋.
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Condition 2◦: If k ≥ ⌊ 1
2θ−1⌋ and k < ⌊

2
2θ−1⌋, then 1 + (k + 1)(1− 2θ) ∈ [−1, 0), we have

t∑
i=1

(i+ t0)
1+(k+1)(1−2θ) ≤

t∑
i=1

∫ i

i−1
(x+ t0)

1+(k+1)(1−2θ)dx =

∫ t

0
(x+ t0)

1+(k+1)(1−2θ)dx

≤ (t+ 1 + t0)
2+(k+1)(1−2θ)

2 + (k + 1)(1− 2θ)
.

The same as Condition 1◦, the inequality for r
(k)
t (E.18) holds for k ≥ ⌊ 1

2θ−1⌋ and k < ⌊
2

2θ−1⌋.

• Initial case II: For k = ⌊ 2
2θ−1⌋.

Suppose the inequality for k − 1 (i.e. ⌊ 2
2θ−1⌋ − 1) holds

E∥r(k−1)
t ∥2γ ≤ Ck−1(t+ 1 + t0)

k(1−2θ). (F.30)

The same as (F.28), the following inequality is guaranteed by (F.30) (we omit some calculation

here because the analysis is exactly the same as Induction step I)

E∥r(k)t ∥2γ ≤ κ4−2γA2
t∑

i=1

ν2i

t∏
j=i+1

(1− νjλj)2E∥r(k−1)
i−1 ∥

2
γ

≤ κ4−2γA2Ck−1

t∑
i=1

a2(i+ t0)
−2θ

t∏
j=i+1

(1− (j + t0)
−1)2(i+ t0)

k(1−2θ)

= a2κ4−2γA2Ck−1

∑t
i=1(i+ t0)

1+(k+1)(1−2θ)

(t+ t0)2
.

(F.31)

Since k = ⌊ 2
2θ−1⌋, we have 2 + (k + 1)(1− 2θ) < 0. Therefore,

(i+ t0)
1+(k+1)(1−2θ) ≤

∫ i

i−1
(x+ t0)

1+(k+1)(1−2θ)dx =
(i− 1)2+(k+1)(1−2θ) − i2+(k+1)(1−2θ)

(k + 1)(2θ − 1)− 2

and we have

E∥r(k)t ∥2γ ≤ a2κ4−2γA2Ck−1

∑t
i=1

∫ i
i−1(x+ t0)

1+(k+1)(1−2θ)dx

(t+ t0)2

≤ a2κ4−2γA2Ck−1
t
2+(k+1)(1−2θ)
0 − (t+ t0)

2+(k+1)(1−2θ)

(k + 1)(2θ − 1)− 2
(t+ t0)

−2

≤ a2κ4−2γA2Ck−1
(t0 + 2)2

((k + 1)(2θ − 1)− 2)(t0 + 1)2
(t+ 1 + t0)

−2.

Thus, the inequality for r
(k)
t (E.18) holds for k = ⌊ 2

2θ−1⌋.

• Induction step II: For k > ⌊ 2
2θ−1⌋.

68



Suppose the inequality for k − 1 holds, i.e.

E∥r(k−1)
t ∥2γ ≤ Ck−1(t+ 1 + t0)

−2. (F.32)

The same as Initial case II, plugging in (F.32), the following inequality holds,

E∥r(k)t ∥2γ ≤ κ4−2γA2
t∑

i=1

ν2i

t∏
j=i+1

(1− νjλj)2E∥r(k−1)
i−1 ∥

2
γ

≤ κ4−2γA2Ck−1

t∑
i=1

a2(i+ t0)
−2θ

t∏
j=i+1

(1− (j + t0)
−1)2(i+ t0)

−2

≤ a2κ4−2γA2Ck−1
t1−2θ
0 − (t+ t0)

1−2θ

2θ − 1
(t+ t0)

−2

≤ a2κ4−2γA2Ck−1
(t0 + 2)2

(2θ − 1)(t0 + 1)2
(t+ 1 + t0)

−2.

Thus, the inequality for r
(k)
t (E.18) holds for k > ⌊ 2

2θ−1⌋.

F.6 Error Decomposition in the Proof of Lemma 4.18

In this section, we study the error decomposition of stochastic approximation sequences ft generated

by the Robbins-Monro algorithm (E.3):

ft = ft−1 − νt(Atft−1 − bt), (F.33)

where At := Lt + λtI are stochastic operators and bt := ytϕut are random variables in H. Define

their expectation

Āt := EAt, b̄ := Ebt.

We introduce the basic decomposition for ft−f (corresponding to Lemma E.2), and demonstrate the

martingale decomposition and the semi-stochastic decomposition involved in the proof of Lemma

4.18 (especially Lemma E.11).

F.6.1 Martingale Decomposition

The aim is to study the error decomposition for ft−f . To do this, we first define the semi-stochastic

population iteration gt:

g0 = f0, gt = (I − νtĀt)gt−1 + νtbt. (F.34)

Comparing (F.34) with (F.33), the semi-stochastic iteration replaces At in ft by its expectation Āt

and remains the second stochastic term bt. This semi-stochastic iteration eliminates the randomness

of At, and thus can be viewed as a population iteration of (F.33).

With this definition, the basic decomposition decomposes the error ft − f into three terms

ft − f = (ft − gt) + (gt − fλt) + (fλt − f), (F.35)
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where ft−gt characterize the sampling error of the stochastic operator At, gt−fλt denotes the differ-

ence between the online estimation function ft of the kernel ridge regression argminh∈(H)p E(u,y)∼ρ∥y−
f(u)∥2+λt∥h∥2H and the true solution fλt , and fλt − f characterizes the error between the solution

for the regularized kernel ridge regression and the true parametric function f (i.e. the solution for

the unregularized kernel regression).

Lemma F.1. (Martingale decomposition) For all s, t ∈ N, t ≥ s,

gt − fλt = Πt
s+1(gs − fλs) +

t∑
i=s+1

νiΠ
t
i+1(bi − b̄)−

t∑
i=s+1

Πt
i(fλi

− fλi−1
), (F.36)

where fλ = (LK + λI)−1LKf is the solution of kernel ridge regression and

Πt
s =

t∏
i=s

(I − νiĀi), Āi = LK + λiI.

Specifically, when s = 0,

gt − fλt = Πt
1(g0 − fλ0) +

t∑
i=1

νiΠ
t
i+1(bi − b̄)−

t∑
i=1

Πt
i(fλi

− fλi−1
). (F.37)

Proof. The proof is direct and we omit it here.

The operator Πt
s in decomposition (F.37) is deterministic and {bi − b̄}t∈N is a sequence of

i.i.d random variables with zero mean, namely, E(bi − b̄) = 0. Consequently, Πt
1(g0 − fλ0) and∑t

i=1Π
t
i(fλi

− fλi−1
) are deterministic and the randomness is contained in

∑t
i=1 νiΠ

t
i+1(bi− b̄). We

have seem that positive-semidefiniteness and non-randomness of the operator Πt
s play a key role in

the proof of Lemma 4.18.

F.6.2 Semi-Stochastic Decomposition

To decompose ft − gt, we consider a sequence of semi-stochastic noise processes (Dieuleveut and

Bach, 2016). To begin with, we observe that ft − gt has a recursion structure

f0 − g0 = 0,

ft − gt = (I − νtAt)(ft−1 − gt−1) + νt(Āt −At)gt−1.
(F.38)

Define a noise process r
(0)
0 as the semi-stochastic iteration of the above recursion

r
(0)
0 = f0 − g0,

r
(0)
t = (I − νtĀt)r

(0)
t−1 + νt(Āt −At)gt−1,

(F.39)

the error ft − gt − r(0)t also has a recursion structure

f0 − g0 − r(0)0 = 0,

ft − gt − r(0)t = (I − νtAt)(ft−1 − gt−1 − r(0)t−1) + νt(Āt −At)r
(0)
t−1.
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Repeat this procedure to define a sequence of noise process {r(k)t }t∈N,k∈N0

r
(1)
0 = 0, r

(1)
t = (I − νtĀt)r

(1)
t−1 + νt(Āt −At)r

(0)
t−1,

r
(2)
0 = 0, r

(2)
t = (I − νtĀt)r

(2)
t−1 + νt(Āt −At)r

(1)
t−1,

...

r
(k)
0 = 0, r

(k)
t = (I − νtĀt)r

(k)
t−1 + νt(Āt −At)r

(k−1)
t−1 ,

...

(F.40)

the error ft − gt −
∑k

j=1 r
(j)
t has a recursion structure

f0 − g0 −
k∑

j=0

r
(j)
0 = 0,

ft − gt −
k∑

j=0

r
(j)
t = (I − νtAt)(ft−1 − gt−1 −

k∑
j=0

r
(j)
t−1) + νt(Āt −At)r

(k)
t−1.

(F.41)

Lemma F.2. (Noise decomposition) For all t ∈ N and i ≤ t,

r
(t)
i = 0 and ft − gt =

(t−1)∨0∑
j=0

r
(j)
t (F.42)

Proof. We use mathematical induction. For t = 0, given r
(0)
0 = f0 − g0 and g0 = f0, we have

r
(0)
0 = f0 − g0 = 0.

For t = 1, given r
(0)
0 = 0 and r

(1)
0 = 0, (F.40) indicates that

r
(1)
1 = (I − ν1Ā1)r

(1)
0 + ν1(Ā1 −A1)r

(0)
0 .

Moreover, using (F.41) for k = 0, we have

f1 − g1 − r(0)1 = (I − ν1A1)(f0 − g0 − r(0)0 ) + ν1(Ā1 −A1)r
(0)
0 = 0.

Therefore, we obtain f1 − g1 = r
(0)
1 .

Assuming that the statements

ft − gt =
t−1∑
j=0

r
(j)
t and r

(t)
i = 0 (F.43)

hold for any i ≤ t, where t > 1. We are going to prove that (F.43) holds for ft+1 − gt+1 and r
(t+1)
i .
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Plugging k = t into (F.41) and using (F.43), we have

ft+1 − gt+1 −
t∑

j=0

r
(j)
t+1 = (I − νt+1At+1)(ft − gt −

t∑
j=0

r
(j)
t ) + νt+1(Āt+1 −At+1)r

(t)
t

= (I − νt+1At+1)(ft − gt −
t−1∑
j=0

r
(j)
t − r

(t)
t ) + νt+1(Āt+1 −At+1)r

(t)
t

= (I − νt+1At+1)(0− r(t)t ) + νt+1(Āt+1 −At+1)r
(t)
t = 0.

Moreover, plugging k = t+ 1 into (F.40) and using (F.43), for any i ≤ t+ 1, we obtain

r
(t+1)
i = (I − νiĀi)r

(t+1)
i−1 + νi(Āi −Ai)r

(t)
i−1

=
i∑

j=1

νj

i∏
s=j+1

(I − νsĀs)(Āj −Aj)r
(t)
j−1

=
i∑

j=1

νj

i∏
s=j+1

(I − νsĀs)(Āj −Aj)0 = 0.

Thus, (F.43) holds for any t ∈ N and we finish the proof.

Remark F.3. Lemma F.2 indicates that the error between the true iteration ft and the semi-

stochastic population iteration gt can be decomposed by a finite sum of the noise process r
(k)
t . We

visualize this theorem in the following tables. For Table 1, the i-th column denotes the outputs

of semi-stochastic iteration and noise processes at iteration i, namely, gi and r
(k)
i , the k-th row

denotes that output of the noise processes r
(k−1)
i . For any t ∈ N, k ∈ N0, define C(t,−1) := gt and

C(t, k) := r
(k)
t for convenience, then the (i, j) entry of Table 1 denotes r

(i−2)
j−1 = C(j − 1, i − 2).

Recalling recalling (F.40), we have

C(t, k) = r
(k)
t = (I − νtĀt)r

(k)
t−1 + νt(Āt −At)r

(k−1)
t−1

=

t∑
j=1

νj

t∏
i=j+1

(I − νiĀi)(Āj −Aj)r
(k−1)
j−1 =

t∑
j=1

νjΠ
t
j+1(Āj −Aj)r

(k−1)
j−1 .

(F.44)

Equation (F.44) implies that each entry C(i, j) = r
(j)
i is comprised of entries in its upper left region

(r
(k)
t such that t ≤ i and j − i + t ≤ k ≤ j) and r

(k)
0 = 0 for all k ∈ N0. Therefore, the entries in

the lower triangle of Table 1 are zero and for all iteration t, the first equation of Lemma F.2 holds,

namely, r
(t)
t = 0.

The same as Table 1, we visualize ft − gt −
∑k

j=0 r
(j)
t in Table 2. For any t ∈ N, k ∈ N0, define

D(t,−2) := gt, D(t,−1) := ft−gt, and D(t, k) := ft−gt−
∑k

j=0 r
(j)
t for convenience, then the (i, j)
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Table 1: Visualization of r
(k)
i

i ∈ N 0 1 2 3 · · · t t+ 1 · · ·
gi C(0,−1) C(1,−1) C(2,−1) C(3,−1) · · · C(t,−1) C(t+ 1,−1) · · ·
r
(0)
i 0 C(1, 0) C(2, 0) C(3, 0) · · · C(t, 0) C(t+ 1, 0) · · ·
r
(1)
i 0 0 C(2, 1) C(3, 1) · · · C(t, 1) C(t+ 1, 1) · · ·
r
(2)
i 0 0 0 C(3, 2) · · · C(t, 2) C(t+ 1, 2) · · ·
...

...
...

...
...

. . .
...

...
...

r
(t−1)
i 0 0 0 0 · · · C(t, t− 1) C(t+ 1, t− 1) · · ·
r
(t)
i 0 0 0 0 · · · 0 C(t+ 1, t) · · ·
...

...
...

...
... · · ·

...
...

. . .

entry of Table 2 denotes fj−1 − gj−1 −
∑i−3

s=0 r
(s)
j−1 = D(j − 1, i− 3). Recalling (F.41), we have

D(t, k) = ft − gt −
k∑

j=0

r
(j)
t

= (I − νtAt)(ft−1 − gt−1 −
k∑

j=0

r
(j)
t−1) + νt(Āt −At)r

(k)
t−1

=

t∑
j=1

νj

t∏
i=j+1

(I − νiAi)(Āj −Aj)r
(k)
j−1.

(F.45)

Again, each entry is comprised of entries in its upper left region and the entries in the lower triangle

of Table 2 are zero. Therefore, for all iteration t, the second equation of Lemma F.2 holds. Namely,

ft − gt −
∑(t−1)∨0

j=0 r
(j)
t = 0 for all t ∈ N.

G Technical Lemmas

Lemma G.1. Consider a sequence Gt ≥ 0 for t ∈ N. Suppose that for some constants a ∈
(1, 2), b > 0 and constant t0 ≥ 0, the sequence Gt satisfies

Gt+1 ≤ (1− (t+ t0)
−1)Gt + b(t+ t0)

−a, (G.1)

then the estimate holds for all t ∈ N
Gt ≲ O(t1−a). (G.2)

Proof. Using (G.1) recursively, we have

Gt+1 ≤ (1− (t+ t0)
−1)Gt + b(t+ t0)

−a

=

t∏
i=0

(1− (i+ t0)
−1)G0 +

t∑
i=0

b

t∏
j=i+1

(1− (j + t0)
−1)(i+ t0)

−a.
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Table 2: Visualization of fi − gi −
∑k

j=0 r
(j)
i

i ∈ N 0 1 2 3 · · · t t+ 1 · · ·
gi D(0,−2) D(1,−2) D(2,−2) D(3,−2) · · · D(t,−2) D(t+ 1,−2) · · ·

fi − gi 0 D(1,−1) D(2,−1) D(3,−1) · · · D(t,−1) D(t+ 1,−1) · · ·
fi − gi − r(0)i 0 0 D(2, 0) D(3, 0) · · · D(t, 0) D(t+ 1, 0) · · ·

fi − gi −
∑1

j=0 r
(j)
i 0 0 0 D(3, 1) · · · D(t, 1) D(t+ 1, 1) · · ·

...
...

...
...

...
. . .

...
...

...

fi − gi −
∑t−2

j=0 r
(j)
i 0 0 0 0 · · · D(t, t− 2) D(t+ 1, t− 2) · · ·

fi − gi −
∑t−1

j=0 r
(j)
i 0 0 0 0 · · · 0 D(t+ 1, t− 1) · · ·

...
...

...
...

... · · ·
...

...
. . .

Define Xj
i =

∏j
k=i(1− (k + t0)

−1) and rewrite the inequality above

Gt+1 ≤ Xt
0G0 +

t∑
i=0

bXt
i+1(i+ t0)

−a. (G.3)

• Upper bound of Xj
i .

Using the inequality 1 + x ≤ ex, we obtain

Xj
i =

j∏
k=i

(1− (k + t0)
−1) ≤ e−

∑j
k=i(k+t0)−1

.

Moreover, using the fact that (k + t0)
−1 ≤

∫ k+t0
k−1+t0

x−1dx for any k ≥ 1, we have

Xj
i ≤ e

−
∑j

k=i

∫ k+t0
k−1+t0

x−1dx
= e−(log(j+t0)−log(i−1+t0)) =

i− 1 + t0
j + t0

.

Plugging this bound into (G.3),

Gt+1 ≤
t0 − 1

t+ t0
G0 +

t∑
i=0

b
i+ t0
t+ t0

(i+ t0)
−a

= (t+ t0)
−1

(
(t0 − 1)G0 +

t∑
i=0

b(i+ t0)
1−a

)
.

(G.4)

Since 1− a ∈ [−1, 0), therefore (i+ t0)
1−a ≤

∫ i
i−1(x+ t0)

1−adx, we further obtain

Gt+1 ≤ (t+ t0)
−1

(
(t0 − 1)G0 + b

t∑
i=0

∫ i

i−1
(x+ t0)

1−adx

)

= (t+ t0)
−1

(
(t0 − 1)G0 + b

(t+ t0)
2−a − (t0 − 1)2−a

2− a

)
≲ O(t1−a).
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Lemma G.2. Let X be a compact subset of Rd, let H be an RKHS on X with respect to a bounded

Mercer kernel K (for all x ∈ X , K(x, x) ≤ κ2) and a probability measure ρX . For any γ ≥ 0 and

f ∈ H, the equality holds

∥f∥2γ = ∥L(1−γ)/2
K f∥2H. (G.5)

Proof. For all f =
∑∞

i=1 aiµ
1/2
i ei ∈ H, the γ-norm is

∥f∥2γ = ∥
∞∑
i=1

aiµ
1/2
i ei∥2γ =

∞∑
i=1

a2iµ
1−γ
i .

Besides, since L
(1−γ)/2
K f =

∑∞
i=1 aiµ

(2−γ)/2
i ei, we obtain

∥L(1−γ)/2
K f∥2H = ∥

∞∑
i=1

aiµ
(2−γ)/2
i ei∥2H =

∞∑
i=1

aiµ
1−γ
i = ∥f∥2γ .

Lemma G.3. Let X be a compact subset of Rd, let H be an RKHS on X with respect to a bounded

Mercer kernel K (for all x ∈ X , K(x, x) ≤ κ2) and a probability measure ρX . Let {νt}t∈N and

{λt}t∈N be positive sequences satisfied limt→∞ νt = 0, limt→∞ λt = 0 and

1− νtλt
νt

≥ κ2

holds for all t ∈ N. For any i, j ∈ N, the following inequality holds

∥
j∏

k=i

(I − νk(LK + λkI))∥H→H ≤
j∏

k=i

(1− νkλk). (G.6)

Proof. By the definition of spectral norm,

∥
j∏

k=i

(I − νk(LK + λkI))∥H→H ≤
j∏

k=i

∥(I − νk(LK + λkI))∥H→H.

Note that LK |H and I are compact, self-adjoint, and positive-semidefinite operators. By the spectral

representation of the compact operator, we obtain

LK =
∞∑
i=1

µ
1/2
i ⟨ei, ·⟩Lρ2X

µ
1/2
i ei =

∞∑
i=1

µi⟨µ1/2i ei, ·⟩Hµ1/2i ei

and

I =
∞∑
i=1

⟨ei, ·⟩L
ρ2X
ei =

∞∑
i=1

⟨µ1/2i ei, ·⟩Hµ1/2i ei.
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Therefore, for any k ∈ N,

∥(I − νk(LK + λkI))∥H→H = ∥(1− νkλk)I − νkLK∥H→H

= ∥(1− νkλk)
∞∑
i=1

⟨µ1/2i ei, ·⟩Hµ1/2i ei − νk
∞∑
i=1

µi⟨µ1/2i ei, ·⟩Hµ1/2i ei∥H→H

= ∥
∞∑
i=1

(1− νk(λk + µi))⟨µ1/2i ei, ·⟩Hµ1/2i ei∥H→H

= sup
i∈N
|1− νk(λk + µi)|.

Given the spectral representation K =
∑∞

i=1 µiei ⊗ ei, we have

µi ≤
∞∑
i=1

µi =

∞∑
i=1

∫
X
µie

2
i (x)dρX ≤

∫
X

∞∑
i=1

µie
2
i (x)dρX ≤ sup

x∈X

∞∑
i=1

µie
2
i (x) ≤ sup

x∈X
K(x, x)

Therefore,

µi ≤ sup
x∈X

K(x, x) ≤ κ2, (G.7)

combining with the fact that κ2 ≤ (1− νtλt)/νt, we obtain

µi ≤ κ2 ≤
1− νtλt

νt
,

namely, 1−νk(λk+µi) is non-negative. Moreover, since LK is positive-semidefinite, its eigenvalues

µi ≥ 0 holds for any i ∈ N. As a result, we have

sup
i∈N
|1− νk(λk + µi)| = sup

i∈N
(1− νk(λk + µi)) ≤ 1− νkλk.

Finally, we obtain the spectral norm bound

∥
j∏

k=i

(I − νk(LK + λkI))∥H→H ≤
j∏

k=i

(1− νkλk).

Lemma G.4. Let X be a compact subset of Rd, let H be an RKHS on X with respect to a bounded

Mercer kernel K (for all x ∈ X , K(x, x) ≤ κ2) and a probability measure ρX . Let ϕ be the feature

map of K, for all γ ∈ [0, 1] and x ∈ X , the γ-norm of ϕx is bounded

∥ϕx∥γ ≤ κ2−γ . (G.8)

Suppose that Kγ : X × X → R is the kernel associated with Hγ and let ϕγ : X → Hγ be the

feature map of Kγ . If the embedding property (Assumption 4.14) holds for α ≤ γ (i.e. Kγ(x, x) ≤
A2, ∀x ∈ X ). For any x ∈ X ,

∥ϕγx∥γ ≤ A. (G.9)
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Proof. Using the spectral representation for kernel K, we obtain

K =
∞∑
i=1

µiei ⊗ ei, ϕx =
∞∑
i=1

µ
1/2
i ei(x)µ

1/2
i ei.

Therefore, the γ-norm of ϕx has the expression

∥ϕx∥2γ = ∥
∞∑
i=1

µ
1/2
i ei(x)µ

1/2
i ei∥2γ =

∞∑
i=1

µ2−γ
i e2i (x)

≤ sup
i∈N

µ1−γ
i

∞∑
i=1

µie
2
i (x) = sup

i∈N
µ1−γ
i K(x, x)

≤ sup
i∈N

µ1−γ
i κ2.

Plugging in (G.7), we have

∥ϕx∥2γ ≤ sup
i∈N

µ1−γ
i κ2 ≤ κ2(2−γ).

Again, using the spectral representation for kernel Kγ , we obtain

Kγ =

∞∑
i=1

µγi ei ⊗ ei, ϕγx =

∞∑
i=1

µ
γ/2
i ei(x)µ

γ/2
i ei.

Using the fact supx∈X K
γ(x, x) ≤ A2, we have

∥ϕγx∥2γ = ∥
∞∑
i=1

µ
γ/2
i ei(x)µ

γ/2
i ei∥2γ =

∞∑
i=1

µγi e
2
i (x)

= Kγ(x, x) ≤ A2.

Lemma G.5. Let X be a compact subset of Rd, let H be an RKHS on X with respect to a bounded

Mercer kernel K (for all x ∈ X , K(x, x) ≤ κ2) and a probability measure ρX . For any independent

random variables sequence {ut}t∈N, let

ϕt = ϕut and yt = f(ut) + ϵt,

where {ϵt}t∈N are independent noise term (and independent of {ut}t∈N) with uniform norm bound

σ2 and f ∈ Hβ. If the embedding property (Assumption 4.14) holds for α < β (i.e. Kβ(x, x) ≤
A2, ∀x ∈ X ). For any γ ∈ [α, β), the following uniform γ-norm bound for sequence {ytϕt}t∈N holds

E∥ytϕt∥2γ ≤ κ2(2−γ)(A2∥f∥2β + σ2). (G.10)

Proof. Using Cauchy inequality,

E∥ytϕt∥2γ = E(|yt|∥ϕt∥γ)2

≤ (Ey2t )(E∥ϕt∥2γ) = (E(f(ut) + ϵt)
2)(E∥ϕt∥2γ)

(a)
= (E(f2(ut) + ϵ2t ))︸ ︷︷ ︸

(I)

(E∥ϕt∥2γ)︸ ︷︷ ︸
(II)

,
(G.11)
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where (a) makes use of the independence between ut and the noise term ϵt, and uses the fact that

Eϵt = 0.

• Upper bound of (I).

For any t ∈ N, define ϕβt = ϕβut ∈ Hβ. Since f ∈ Hβ, by the reproducing property, we have

f(ut) = ⟨f, ϕβt ⟩β and

Ef2(ui) = E⟨f, ϕβt ⟩2β ≤ ∥f∥2βE∥ϕ
β
t ∥2β ≤ ∥f∥2β sup

ut∈X
∥ϕβt ∥2β.

The embedding property implies that suput∈X ∥ϕ
β
t ∥2β ≤ A2, therefore,

Ef2(ui) ≤ A2∥f∥2β.

We further obtain

(I) = E(f2(ut) + ϵ2) ≤ A2∥f∥2β + σ2.

• Upper bound of (II).

Using Lemma G.4, we have

(II) = E∥ϕt∥2γ ≤ sup
ut∈X
∥ϕt∥2γ ≤ κ2(2−γ).

Combining the upper bounds for (I) and (II), we obtain the upper bound for (G.11)

E∥ytϕt∥2γ ≤ κ2(2−γ)(A2∥f∥2β + σ2).
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Table 3: Table of Notation
n number of agents (i ∈ [n])

xi action of agent i

x joint action x = (x1, x2, · · · , xn)

x−i joint action of all agents except i

Xi action set of agent i

X joint action set X = X1 × · · · × Xn

di dimension of the action set Xi

d dimension of the joint action set X
Li(x) utility function of agent i

ℓi(x, zi) loss function of agent i

zi data observed by agent i

Di(x) decision-dependent distribution of agent i

Zi sample space of zi
p dimension of Zi

∇iLi(x) individual gradient of agent i

H(x) gradient of the decision-dependent game

x∗ Nash equilibrium x∗ = (x∗
1, x

∗
2, · · · , x∗

n)

τ strongly monotone parameter

F function class of parametric model

fi(x) parametric function of agent i

ϵi noise term the parametric model of agent i

σ2 variance bound of ϵi
Pi distribution of ϵi
∇iℓi(x, zi) gradient of ℓi(x, zi) to xi

∇ziℓi(x, zi) gradient of ℓi(x, zi) to zi
∇̂iLi(x) unbiased estimator of ∇iLi(x)

Ĥ(x) unbiased estimator of H(x)

ρX sampling distribution on X
ρi distribution on X × Zi induced by x ∼ ρX and zi ∼ Di(x)

xt
i action of agent i at iteration t

xt joint action x = (xt
1, x

t
2, · · · , xt

n) at iteration t

xt
−i joint action of all agents except i at iteration t

Ai parametric function of agent i in the linear setting

At
i estimation of Ai at iteration t

Aii, A
t
ii submatrix of Ai, A

t
i with columns indexed by agent i

ut
i, y

t
i samples for estimation update at iteration t

zti samples for projected gradient step at iteration t

νt gradient size of estimation update at iteration t

ηt gradient size of projected gradient step at iteration t

K Mercer kernel on X × X
H RKHS induced by kernel K and measure ρX
ϕ feature map of K (ϕx = K(·, x))
λt regularization term of estimation update at iteration t

∂iϕ partial derivative of ϕ to xi

L Lipschitz parameter of H(x)

δ, ζ parameters about Lipschitz continuity defined in Assumptions 4.3, 4.4

l1, l2, R parameters about isotropic defined in Assumption 4.8

t0 sufficiently large constant to set the gradient steps

µi eigenvalues of kernel K

ei eigenfunctions of kernel K

Hα α-power space of H
Kα kernel of Hα

ϕα feature map of Kα

κ2, A2 upper bound of K,Kα

α, β parameters about source condition and embedding property defined in Assumptions 4.14,

4.15

ξ upper bound of ∂iϕ
α in α-power norm
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