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Abstract

In the analysis of Electronic Health Records (EHR), clustering patients according to patterns
in their data is crucial for uncovering new subtypes of diseases. Existing medical literature often
relies on classical hypothesis testing methods to test for differences in means between these
clusters. Due to selection bias induced by clustering algorithms, the implementation of these
classical methods on post-clustering data often leads to an inflated Type I error. In our study,
we introduce a new statistical approach that adjusts for this bias when analyzing data collected
over time. Our method extends classical selective inference methods for cross-sectional data
to longitudinal data via the utilization of kernel regression. We provide theoretical guarantees
for our approach with upper bounds on the selective type-I and type-II errors. We apply the
method to simulated data and real-world Acute Kidney Injury (AKI) EHR datasets, thereby
illuminating the advantages of our approach.

1 Introduction

Testing for a difference in means between groups of functional data is fundamental to answering
research questions across various scientific areas. Recently, there has been an increasing demand for
post-clustering inference of functional data, namely, testing the difference between groups discovered
via clustering algorithms. In particular, the electronic health records (EHR) system contains a rich
source of longitudinal observational data, covering many biochemical markers, making this type of
data an ideal choice for identifying patient subphenotypes. With the increasing prevalence of EHR
data, longitudinal data clustering methods used to evaluate patient subphenotypes have become
more commonly applied in clinical research, especially in the analysis of vital signs, laboratory
values, interventions, etc (Manzini et al., 2022; Ramaswamy et al., 2021; Lou et al., 2021; Chen
et al., 2022; Zeldow et al., 2021). Post-clustering inference for functional data is a challenging
problem and existing testing methods are not applicable. The main challenge of this problem is the
selection bias, which would lead to inflated false discoveries if uncorrected, induced by clustering
algorithms. In more detail, the clustering forces separation regardless of the underlying truth,
and further makes the p-value invalid. In practical applications, empirical observations reveal that
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applying classical methods directly often leads to spuriously small p-values (Hall and Van Keilegom,
2007; Zhang and Chen, 2007; Horváth and Kokoszka, 2012; Qiu et al., 2021). This is an instance of
a broader phenomenon termed data snooping (Ioannidis, 2005), which refers to the misuse of data
analysis to find patterns in data that can be presented as statistically significant, thus leading to
potentially false conclusions.

Selective inference (Fithian et al., 2014) is commonly used to correct the selection bias. The
focus of selective inference has so far mainly been on discrete datasets (Lee et al., 2016; Gao et al.,
2022). Motivated by applications in EHR data analysis, we consider here a new framework of
selective inference that adapts to continuous functional datasets.

In this paper, we develop a valid test for the difference in means between two clusters estimated
from the functional data. To handle the continuity of functional datasets, which often contain large
timesteps and cannot be treated as discrete data, our method finds the low-rank spectral represen-
tation for the continuous data based on kernel ridge regression. To address the selection bias in the
inference procedure, we propose a selective inference framework leveraging the clustering informa-
tion. Mathematically, we define the selective p-value for post-clustering data via conditioning on
the observed clustering partition based on the prior literature on selective inference (Fithian et al.,
2014; Lee et al., 2016; Yang et al., 2016; Gao et al., 2022; Chen and Witten, 2022). This selective
p-value decouples the bias induced by the clustering algorithms and our theoretical guarantees show
that this method controls the selective type-I error.

1.1 Applications: Phenotyping based on Electronic Health Records

The application of longitudinal clustering methods to Electronic Health Records (EHR) data has
proven to be a powerful tool for phenotypic classification, offering novel insights into patient het-
erogeneity and disease progression. There are numerous studies that have similarly utilized longi-
tudinal clustering methods with EHR data to identify various patient subtypes and advance clinical
research. For instance, researchers studied type 2 diabetes mellitus(T2DM) patients by analyzing
their data on various biochemical markers (Manzini et al., 2022). These markers included glycated
hemoglobin (HbA1c), body mass index (BMI), both diastolic and systolic blood pressures, among
others. By applying longitudinal deep learning clustering methods to this data, they identified seven
distinct subtypes of T2DM. In the field of chronic kidney disease (CKD) research (Ramaswamy
et al., 2021), a hybrid semimechanistic modeling methodology was introduced to analyze CKD
progression. When applied to the EHR data of CKD patients, the model effectively identified
five distinct patient subpopulations. Through this pioneering method, the emphasis was placed
on harnessing longitudinal data to understand disease progression phenotypes, thereby aiming to
streamline individualized treatment strategies for each subgroup. Building on these foundational
methodologies and appreciating their transformative impact in the realm of medical research, our
focus narrows to a nuanced application. While our method is versatile and can be applied after any
clustering approach, we showcase its efficacy using AKI as a representative example in this paper.

Acute kidney injury (AKI) is a potentially life-threatening condition that impacts approximately
20% of hospitalized patients in the United States (Wang et al., 2012). Given this prevalence, early
warning of patient outcomes becomes crucial as it can significantly improve prognosis (MacLeod,
2009). Identifying new subphenotypes often serves as the foundation for such early warnings.
Importantly, the most direct and insightful indicator for AKI currently available is the temporal
trajectory of creatinine. Therefore, we applied our method specifically to the inference after longi-
tudinal clustering of AKI. In conducting this, we utilized EHR data from the MIMIC-IV database
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Johnson et al. (2020, 2023); Goldberger et al. (2000). As depicted in Figure 3a, there is a notable
heterogeneity in the creatinine trajectories among AKI patients. Under such circumstances, our
approach has successfully yielded results that are both meaningful and highly credible.

1.2 Main Contributions

Our work presents a post-clustering selective inference framework for functional data and pro-
vides theoretical guarantees to control the selective type-I error under the Gaussian distributional
assumption. To handle the aforementioned challenges of function data, our framework is com-
prised of three parts. To begin with, we leverage the low-dimensional embedding to coerce the
high-dimensional function data into low-dimensional tensors and complement the miss values si-
multaneously. The low-dimensional embedding is a linear transformation and preserves normality,
thus, the low-dimensional embedding is a random tensor with each slice following the matrix nor-
mal distribution. Next, we propose an estimator to evaluate the unknown covariance matrices
of the matrix normal distribution and leverage the estimated covariance matrices to conduct the
whitening transformation. We then define the selective p-value based on the tensor obtained by the
low-dimensional embedding and whitened transformation. Inspired by Gao et al. (2022), the pro-
posed selective p-value leverages the clustering information to reduce the selection bias and further
controls the selective type-I error. Moreover, we prove that the proposed p-value is the conditional
probability of a scaled chi-square distribution truncated to a subset of R, and we introduce the
Monte Carlo approximation to estimate the proposed selective p-value.

Compared with previous works (Gao et al., 2022; Chen and Witten, 2022; Yun and Barber,
2023; Hivert et al., 2022), our work has two major novelties. First, our selective inference framework
addresses the functional data with missing values and multiple features, while previous works mostly
focus on vector inputs. We complement the missing values by low-dimensional embedding, namely,
the basis expansion regression. This is a linear transformation that preserves the null hypothesis
and alternative hypothesis, where each record for a feature is transformed into a low-dimensional
vector. The transformed data has a tensor structure induced by the multiple features. Thus, we
extend the selective inference for matrix inputs (Gao et al., 2022) into the tensor case and define
the selective p-value.

Second, we leverage the sample covariance estimator to conduct the whitening transformation.
In contrast to previous works, which usually assumed the covariance matrices are scaled identity
matrices (Gao et al., 2022; Chen and Witten, 2022; Yun and Barber, 2023; Hivert et al., 2022), this
diagonal covariance assumption does not hold in the functional case. As a result, the estimators
for the scaled parameter, such as the mean estimator (Gao et al., 2022), fail in the functional
setting. To handle this problem, we show that the problem is essentially estimating the covariance
of a truncated normal distribution, and we consider the sample covariance estimator. We prove
that the selective inference framework controls the selective type-I error (the sample covariance
estimator is consistent under the null hypothesis). Moreover, we show that the statistical power
converges to 1 and the proposed selective inference framework is asymptotically powerful.

1.3 Related work

Selective inference. In the classic statistical inference, the hypothesis is assumed to be deter-
mined prior to observing the dataset. However, in a wide class of supervised and unsupervised
learning tasks, such as regression and clustering, the hypothesis can be data-driven. Therefore, the
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model selection step brings selection bias and classical inference methods are not valid. To handle
this problem, Berk et al. (2013); Fithian et al. (2014); Lee et al. (2016) developed the selective
inference framework, which is a process of making statistical inferences that account for the selec-
tion effect. Following the work of Lee et al. (2016), selective inference has been applied extensively
in various problems, such as high-dimensional linear model (Tibshirani et al., 2016; Yang et al.,
2016; Loftus and Taylor, 2015; Charkhi and Claeskens, 2018; Taylor and Tibshirani, 2018; Hyun
et al., 2021; Jewell et al., 2022). In the recent years, Gao et al. (2022) proposed an elegant selective
inference framework to conduct the hypothesis test on post-clustering dataset, and there are a
series of following work focusing on the same topic (Chen and Witten, 2022; Zhang et al., 2019;
Hivert et al., 2022; Yun and Barber, 2023) In this paper, we develop a selective inference framework
for functional data, while most of the existing work concentrates on post-clustering inference for
discrete data.

Functional Clustering. In this paper, we study the post-clustering inference for functional data.
Functional clustering refers to the process of categorizing or grouping curves, functions, or shapes
based on their patterns or structures. There are various approaches for functional clustering and
cluster analysis has been well studied in the functional data analysis literature for its practical
applications. For instance, Abraham et al. (2003); Serban and Wasserman (2005); Kayano et al.
(2010); Coffey et al. (2014); Giacofci et al. (2013) developed two-stage clustering leveraging the
functional basis expansion, where the idea is reducing the dimension of functional data by basis
expansion regression to implement clustering methods for low-dimensional vectors. In contrast to
the functional basis expansion approach that requires a prespecified set of basis functions, Peng and
Müller (2008); Chiou and Li (2007) proposed methods that choose the basis by functional principle
components (FPC). Besides, there are other lines of research that conduct functional clustering
with different approaches, such as leveraging the FPC subspace-projection (Chiou, 2012; Chiou
and Li, 2008) and model-based clustering (Banfield and Raftery, 1993; James and Sugar, 2003;
Jacques and Preda, 2014; Heinzl and Tutz, 2014).

Cross-covariance matrix. In this paper, we model the multi-feature functional data by the
matrix normal distribution. To conduct the whitening transformation in the proposed selective
inference framework, we need to estimate the block covariance matrix, which is determined by the
Kronecker product of the covariance matrices of the matrix normal distribution. We remark that
estimating the block covariance matrix has been widely studied in Dawid (1981); Dutilleul (1999);
Yin and Li (2012); Tsiligkaridis and Hero (2013); Zhou (2014); Chen and Liu (2015); Hoff (2015);
Ding and Dennis Cook (2018); Hoff et al. (2022).

1.4 Notation and Preliminaries

We introduce some useful notation before proceeding. Throughout this paper, we denoteMN (µ,Σ1,Σ2)
as the matrix normal distribution with the mean µ and covariance matrices Σ1,Σ2. For any positive
integer n, we denote Sn+ as the set containing all n-by-n symmetric positive semi-definite matrices.
For any matrix A ∈ Rm×n, we denote ∥A∥F as its Frobenius norm and denote vec(A) ∈ Rmn as
the vectorization of A. For any Hilbert space H, we denote ∥·∥H as the associated norm. For any
functions f, g, define f ⊙ g as their cartesian product, namely, for any (f ⊙ g)(x, y) = f(x) · g(y)
where x, y are in the domains of f, g respectively. For any two matrices A ∈ Rm×n, B ∈ Rp×q,
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define

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ∈ R(pm)×(qn)

as their Kronecker product. For any positive integer n and any n-mode tensor A ∈ Ri1×···×in , define
A[j, :, · · · , :] as its jth mode-1 slice, A[:, j, :, · · · , :] as its jth mode-2 slice, and so on. For any matrix
U ∈ Rim×K , where i1, . . . , in,K are positive integers, define U ×m A ∈ Ri1×···im−1×K×im+1×in as
their m-mode tensor product.

1.5 Roadmap

The rest of this paper is organized as follows. We first demonstrate the problem setting of post-
clustering inference for functional data in Section 2. We then present our method based on kernel
ridge regression and selective inference technique in Section 3. Next, we derive theoretical guar-
antees for our method to show that it controls the selective type-I error in Section 4. Finally, we
conduct numerical experiments for synthetic data to verify our theory and apply it to real datasets
on Acute Kidney Injury (AKI) EHR in Section 5.

2 Problem Settings

In this section, we define the generative model of input datasets and introduce the problem formu-
lation of post-clustering inference for functional data, as well as the challenges and our approach.
To elaborate, the electronic health record (EHR) contains records of diverse features for different
patients, where each record of a feature is functional data.

Suppose there are T time points in total, n subjects (or patients), and m features. Specifically,
we observe Wij(t), t ∈ Ωij , where i ∈ [m] is the subject index, j ∈ [n] is the feature index, t ∈ [0, T ]
is the time point of the measurements, and Ωij is the set of time points for subject i and feature
j. We remark that EHR data usually contains missing values and there might be few time points
in Ωij . Given the collection of records for features and time points that the data were observed for
subject (or patient) i, we aim to discover the endotypes of the subjects, i.e., if these subjects form
subclusters. For this goal, we leverage kernel ridge regression and apply clustering algorithms to
find the subclusters (refer to Section 3).

We consider the model for m patients with n features and T total time points. In more detail,
we observe W = (Wi)i∈[m] for each patient i ∈ [m], where Wi := (Wij)j∈[n] is the observed data
of the i th patient n curves within a certain time period recording their physical features. Let
Ω = (Ωi)i∈[m] be the corresponding time points of the record W, where Ωi := (Ωij)j∈[n]. Here
Ωij := (tijk)k∈[rij ] ∈ Rrij is the record of time points for the j th feature of the i th patient and rij
is the number of time points for this record, and Wij := (Wij(tijk)) ∈ Rrij is the record for the j
feature of the i patient. For all the i ∈ [m], j ∈ [n] and k ∈ [rij ], we remark that tijk ∈ [0, T ]. In
summary, the data for each patient i contains n features, where the record of each feature j is a
vector Wij associated with the time points Ωij .
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2.1 Model Setup

Now we present a basic assumption on the data-generating process. Intuitively, we assume each
physical feature follows a Gaussian process, which indicates the feature record Wij follows a multi-
variate normal distribution in the discrete regime. Considering the similarity between patients and
for simplicity of analysis, we assume these normal distributions have the same covariance matrix
Σ1,Σ2. Here Σ1 is the covariance matrix induced by the kernel of the Gaussian process for each
feature and Σ2 presents the covariance between different features. Intuitively, this assumption sup-
poses the observed record of each patient on the same feature following Gaussian processes only
with the difference in the mean functions, and the covariances between any two features are the
same for different patients.

Assumption 1 (Distributional Assumption). Suppose W = (Wi)i∈[m], where Wi,Wj are indepen-

dent random matrices for any i ̸= j. Suppose that Wi ∈ Rn×T follows a matrix normal distribution
with Gaussian noise:

Wi = Zi + ϵi, Zi ∼MN (µi,Σ1,Σ2), ϵi ∼MN (0, diag(σ2
j )j∈[n], IT ) ∀i ∈ [m], (1)

where ϵi are matrices with i.i.d. standard Gaussian noise, σ2
j is the variance of noise terms for the

jth feature, µi ∈ Rn×T , Σ1 ∈ Sn+, and Σ2 ∈ ST+ are the same as Assumption 1.

Note that the above assumption considers all the features within T time points (i.e. T is the to-
tal time points) and supposes they follow the multivariate normal distribution with T coordinates.
As a result, with a slight abuse of notation, the data Wi in Assumption 1 is a n× T matrix. How-
ever, we remark that the observed data Wi contains many missing values, and we only observe the
realizations of these multivariate normal distributions in coordinates corresponding with Ωij . That
is, we only observe the records for coordinates Ωij in the data Wi. Also, Assumption 1 considers
the matrix normal noise terms ϵi, which fits the real-world situation that observed records are often
noisy. Specifically, we assume the covariance matrix of each ϵi is a diagonal matrix, and the i th co-
ordinate of noise terms is σ2

i . We further remark that all the parameters {µi}i∈[m],Σ1,Σ2, {σi}i∈[m]

are unknown and we only observe the record {Wi}i∈[m] as well as the time points {Ωi}i∈[m].

2.2 Problem Formulation

Given a dataset X following model (1), one might impose a clustering algorithm to split the patients
into two clusters C(X ) := C1 ∪ C2, where {C1, C2} forms a partition of [m] and record the number
of patients in each cluster. As aforementioned, we are interested in testing the difference of means
between clusters C1, C2, namely, the difference between the mean matrices of the matrix normal
distribution defined in Assumption 1. For any partition of G ⊂ [m], define

µ̄G =

∑
i∈G µi

|G|
, W̄G =

∑
i∈G Wi

|G|
,

where µ̄G denotes the population mean and W̄G denotes the sample mean for the data within the
partition G: C1, C2, respectively. Next, we cast the problem described above into the following
hypothesis testing problem:

H
{C1,C2}
0 : µ̄C1 = µ̄C2 versus H1 : µ̄C1 ̸= µ̄C2 . (2)
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Figure 1: Failure of the two-sample t-test. We sample 100 datasets following the model (1)
with the common mean µi = 0 and the zero noise ϵi = 0 for all i ∈ [100]. Each dataset contains the
record of 500 patients, where the record for each patient contains one curve with 11 time points
(m = 500, n = 1, T = 11). We use the k-means algorithm to obtain two clusters. (a) shows the
first 100 curves of the first dataset labeled by the clustering results. (b) is the quantile plot of the
p-values for the 100 datasets obtained by the two-sample t-test.

A simple approach for (2) is the Wald test. Suppose {wi}i∈[m] is an observed dataset satisfy-
ing the generating process (1), and w̄C1 , w̄C2 are sample means for the clusters obtain by certain
algorithms. A straightforward formulation for the p-value is

P
H

{C1,C2}
0

(∥W̄C1 − W̄C2∥F ≥ ∥w̄C1 − w̄C2∥F ), (3)

where W̄C1 is the sample mean of a realization for Wi ∼ MN (µi,Σ1,Σ2) for any i ∈ C1 and the
same for W̄C2 . However, this test fails to control the type-I error, namely, one might find the p-value
as the trend to be 0 or 1, which is problematic in real practice.

We propose two ideas to handle this challenge. First, we use basis expansion regression to
find a low-dimensional expression for the functional data. Specifically, we choose a certain basis,
such as Hermite functions, and extract the coefficients of the basis regression; see Section 3.1 for
more details. Second, we derive a selective p-value for the low-dimensional expression of the model
(2) following Gao et al. (2022); Chen and Witten (2022), the selection procedure leverages the
informative of post-clustering data and ensures that this selective p-value can control the type-I
error. We provide theoretic results to guarantee that when rij → ∞ (namely, the observed time
points go to infinite), the proposed selective p-value controls the type-I error.

3 Selective Inference for Functional Data Clustering

In this section, we present the method of selective inference for functional data and propose a
new statistic that controls the type-I error, i.e., the selective p-value, for testing the difference
between post-clustering matrix data following the model (1), inspired by Gao et al. (2022). Our
method is comprised of three parts, first, we impose the basis expansion regression to embed the
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Figure 2: Overall procedure. (a) shows the first 100 curves of the dataset with the common
mean µi = 0 and the zero noise ϵi = 0 labeled by the clustering results. (b) is the scatter plot
(first two coordinates) of the low-dimensional embedding for this dataset. (c) is the scatter of the
whitened dataset. (d) shows the first 100 curves of the dataset with the mean µi = −5 or µi = 5
and the zero noise term labeled by the clustering results. (e) and (f) are the scatter plots (first
two coordinates) for the low-dimensional embedding and whitened dataset, respectively.

functional data Wi into low-dimensional vectors. Next, we estimate unknown covariance matrices
of the embedded vectors. We then leverage these covariance matrices to conduct the whitening
transformation and further use the Monte Carlo method (importance sampling) to approximate
the proposed selective p-value.

Our method is based on the selective inference framework, which has been studied thoroughly
in Benjamini and Bogomolov (2014); Fithian et al. (2014); Loftus and Taylor (2015); Taylor and
Tibshirani (2015); Yang et al. (2016); Lee et al. (2016); Hyun et al. (2018). The key idea of
this framework is adjusting the inferential process to account for the selection that has occurred,
thereby providing statistically valid conclusions. In the context of hypothesis test (2), we want to
test µ̄C1 = µ̄C2 given C1, C2 ∈ C(W), where W := (wi)i∈[m] are realizations of patients follows the
Assumption 1. Thus, we derive the selection procedure by constructing a p-value conditioning on
the event {C1, C2 ∈ C(W)}, namely,

P
H

{C1,C2}
0

(
∥W̄C1 − W̄C2∥F ≥ ∥w̄C1 − w̄C2∥F

∣∣∣ C1, C2 ∈ C(W)
)
. (4)
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We remark this p-value is well defined when wi is a n × T matrix for all i ∈ [m], that is, there is
no missing value in wi. However, in the real-world application, wi might contain missing values
and w̄C1 , w̄C2 are not well defined. Because the time records Ωij might be different for all patient
i and feature j, and thus we cannot take the summation

∑m
i=1wi. For the case involving missing

values, we complement these missing values by the following basis expansion regression and also
find low-dimensional representations to calculate the selective p-value.

3.1 Low-dimensional embedding

The goal is to find a low-dimensional representation of the functional data, namely, represent (1)
with a low-dimensional Gaussian matrix model (because time points T in the original model might
be large and numerically infeasible). For the functional data, it is natural to consider the basis
expansion regression, and we further take the coefficients as low-dimensional representations.

Recall the model (2), where Wi denotes the observed data of the ith patient with each row j
denoting the jth feature. Given the record time points T and a record of feature Wij ∈ Rrij , where
rij is the number of time points for this record. We choose q basis functions {ϕs}s∈[q], where q is a
user-specified positive integer, and impose the following ridge regression:

argmin
α∈Rq


∥∥∥∥∥Wij −

q∑
s=1

αsϕs((tij1, . . . , tijrij )/T )

∥∥∥∥∥
2

+ λ∥α∥2
 , (5)

where λ is a user-specified regularization term and (tij1, . . . , tijrij )/T is the linear transformation
that scales the record of times into [0, 1]. We remark that T is the maximum record time of
the data-collection period such as 120 hours in the examples mentioned earlier, thus [0, 1] is the
uniformly scaled time period for all patients i and features j. We use αij ∈ Rq to denote the
solution of (5) with respect to Wij . Define the matrix Φij := (ϕs(tijk/T ))s∈[q],k∈[rij ] ∈ Rq×rij where

the (s, k) ∈ [q]× [rij ] entry is ϕs(tijk/T ) and define Kij := ΦijΦ
⊤
ij ∈ Rq×q, then αij has the following

closed-form expression:
αij = (Kij + λIq)

−1ΦijWij , (6)

and the basis expansion function is µ̂ij =
∑q

s=1 αijsϕs. Intuitively, the estimation error µ̂ij(tij)−µij

goes to zeros if certain regularity assumptions hold and rij →∞.
The linear transformation (6) embeds the functional data Wij into a q-dimensional vector αij .

Therefore, implementing this transformation for all i ∈ [m] and j ∈ [n] transforms the functional
data W into a collection of q-dimensional vectors, which contain a tensor structure. To elaborate,
given the basis {ϕs}s∈[q] and the time record Ω, we define the linear map H :W → Rm×n×q, where
H(W)i,j,: := αij = (Kij +λIq)

−1ΦijWij , namely, the (i, j, k) ∈ [m]× [n]× [q] entry of H(W) is αijk.
We will propose the selective p-value for the tensor H(W) to conduct selective inference in Section
3.3.

We remark that the linear transformationH preserves the normality assumption. In more detail,
the following lemma shows that each slide of H(W)[i, :, :] ∈ Rn×q follows a matrix normal distribu-
tion for all i ∈ [m]. Also, the proposed low-dimensional embedding is scalable for non-functional
features, such as weight and height in practical applications. We can impose Gaussian assumptions
for these scalar features and incorporate them into the tensor H(W), where the linearity of H
implies the normality of all entries.
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Lemma 1. Suppose that W follows the model (1), then Wi ∈ Rn×T and Φij ,Kij are the same for
all i ∈ [m], j ∈ [n]. Define Φ := Φ11 ∈ Rn×T ,K := K11 ∈ Rq×q, the proposed low-dimension repre-
sentation H(W) is a random tensor, where each slice is a random matrix satisfying the following
matrix normal distribution

H(W)[i, :, :] ∼MN (µiΦ
⊤(K + λIq)

−1,Σ1, (K + λIq)
−1ΦΣ2Φ

⊤(K + λIq)
−1)

+MN (0,diag(σ2
j )j∈[n], (K + λIq)

−1K(K + λIq)
−1)).

(7)

IfW contains missing values characterized by the time record Ω. Define the blocked diagonal matrix
Di := diag((Kij + λIq)

−1Φij)j∈[n] ∈ Rnq×(
∑n

j=1 rij), then the vectorization of H(W)[i, :, :] satisfies
multivariate normal distribution corresponding with Ωi:

vec(H(W)[i, :, :]) ∼ N (vec((µΩi
ij Φ

⊤
ij(Kij + λIq)

−1)j∈[n]), Di

[
Σ2 ⊗ Σ1 + IT ⊗ diag(σ2

j )j∈[n]
]Ωi)D⊤

i ),
(8)

where µΩi
ij := (µij(tijk))k∈[rij ] is the subvector of µij characterized by the index tij, and

[
Σ2 ⊗Σ1 +

IT ⊗ diag(σ2
j )j∈[n]

]Ωi) is the submatrix of Σ2 ⊗ Σ1 + IT ⊗ diag(σ2
j )j∈[n] characterized by the time

record Ωi (i.e. the submatrix that each coordinate corresponds to an observed time point).

Proof. See Appendix A.4 for detailed proofs.

Lemma 1 implies that the linear transformation H maintains the normality. If there is no
missing value, (7) indicates this linear transformation does not change the validity of the hypothesis
test (2), because µ̄C1 = µ̄C2 ⇐⇒ H(µ)C1 = H(µ)C2 . If there are missing values, intuitively,
Di → ((K + λIq)

−1Φ)⊗ In when T →∞ and rij/T → 1 for all j ∈ [n], and then (8) is equivalent
to (7). This further implies the linear transformation H approximately maintains the validity of
the hypothesis test if the number of total time points is large and there are few missing values.

3.2 Covariance Estimation and Whitening

As aforementioned, the identity matrices assumption in Lemma 3 is not satisfied in general. There-
fore, it is natural to impose the whitening transformation on the distribution (7) to change the co-
variance matrices into identity matrices. To elaborate, define Λ =

[
(K + λIq)

−1ΦΣ2Φ
⊤(K + λIq)

−1
]
⊗

Σ1+
[
(K + λIq)

−1K(K + λIq)
−1
]
⊗diag(σ2

j )j∈[n], the distribution (7) would be vec(H(W)[i, :, :]) ∼
N (H(µi),Λ). In this section, We will estimate the unknown covariance matrix Λ to impose the
whitening transformation.

To estimate Λ, we notice that if the null hypothesis H
{C1,C2}
0 holds, we have µ̄C1 = µ̄C2 which

further implies H(µ)C1 = H(µ)C2 . As a result, given the fact that vec(H(W)[i, :, :]) ∼ N (H(µi),Λ)
for all i ∈ [m], it is natural to use the sample covariance of the low-dimensional representations
H(W) as an estimator for the covariance matrix Λ, that is:

Λ̂ :=
1

m− 1

[
m∑
i=1

(vec(H(W)[i, :, :])− vec(H(W)))(vec(H(W)[i, :, :]− vec(H(W)))⊤

]
,

where H(W) is the sample mean
∑m

i=1H(W)[i, :, :]/m. Intuitively, if H
{C1,C2}
0 holds and the sample

size m→∞, we have Λ̂→ Λ.

10



If the alternative hypothesis H
{C1,C2}
1 holds, i.e. the mean of two clusters are different (µ̄C1 ̸=

µ̄C2), the proposed sample covariance estimator satisfies the following equation:

Λ̂ =

( 2∑
j=1

[∑
i∈Cj

(vec(H(W)[i, :, :])− vec(H(W)Cj ))(vec(H(W)[i, :, :])− vec(H(W)Cj ))
⊤

+ |Cj |(vec(H(W)Cj )− vec(H(W)))(vec(H(W)Cj )− vec(H(W)))⊤
])

/(m− 1).

(9)

Suppose |C1|, |C2| → ∞ and |C1|/|C2| → c, the above equation implies that Λ̂ → Λ + c(H(µ)C1 −
H(µ)C2)(H(µ)C1 − H(µ)C2)

⊤/(c + 1)2 by simple calculation. Therefore, the sample covariance

estimator has a constant bias c(H(µ)C1 −H(µ)C2)(H(µ)C1 −H(µ)C2)
⊤/(c+ 1)2 which depends on

c and H(µ)C1 −H(µ)C2 .

Whitening. In this step, we use linear transformation to change the covariance matrices of
H(W)[i, :, :] into identity matrices. Note that vec(H(W)[i, :, :]) ∼ N (vec(H(µi)),Λ) where H(µi) =
µiΦ

⊤(K + λIq)
−1 and Λ is defined in Section 3.2, we consider the following linear transformation

for each slices of H(W):

vec(H(W)[i, :, :])→ Λ̂− 1
2vec(H(W)[i, :, :]). (10)

Intuitively, ifm→∞, we have Λ̂→ Λ and the covariance of the transformed matrix Λ̂− 1
2vec(H(W)[i, :

, :]) is approximately the identity matrix Inq:

Λ̂− 1
2vec(H(W)[i, :, :]) ∼ N (Λ̂− 1

2vec(H(W)[i, :, :]), Inq). (11)

Thus, if the null hypothesis H
{C1,C2}
0 holds, the transformed data has the same population mean

for partitions C1 and C2, i.e. Λ̂− 1
2vec(H(W)C1 − H(W)C2) ∼ N (0, (1/|C1|+ 1/|C2|)Inq). For con-

venience, we define the composition of the low-dimensional embeddingH and whitening transforma-
tion (10) as the linear transformation L :W → Rm×n×q, where vec(L(W)[i, :, :]) := Λ̂− 1

2vec(H(W)[i, :
, :]) for all i ∈ [m]. As aforementioned, when m→∞, we have

L(W)C1 − L(W)C2 ∼
√
1/|C1|+ 1/|C2|MN (0, In, Iq) . (12)

We will define the selective p-value (Definition 2) based on the transformed data L(W), (17) implies
that the proposed selective p-value can be rewritten as a truncated survival function of the c · χnq

distribution where c is a positive constant (Lemma 3).

3.3 Selective p-value

Suppose w is a realization of the model (1) and L(w) is the aforementioned transformed data based
on the low-dimensional embedding and whitening steps. Next, the user might apply clustering
algorithms on L(w) to separate patients into 2 clusters where the corresponding non-intersect
partitions for [m] are denoted by C1, C2, and our goal is to test the group mean L(W)C1 = L(W)C2 .
While the classical hypothesis test methods fail to control the type-I error due to the selection bias,
we consider the following selective p-value conditioned on the clustering information:

P
H

{C1,C2}
0

(
∥L(W)C1 − L(W)C2∥F ≥ ∥L(w)C1 − L(w)C2∥F

∣∣∣ C1, C2 ∈ C(L(W))
)
, (13)

11



Intuitively, the proposed p-value is the conditional probability of the difference in cluster means
among all realizations of the model (1) that has the same partition C1, C2 as the observed data.
Fithian et al. (2014) shows that the selective p-value leverages the model selection information to
reduce the selection bias and thus controls the selective type-I error.

Definition 1. (Post-clustering selective type-I error). Suppose that W follows the model (1) and
w is a realization of W. Suppose that a specific clustering algorithm has been applied to w, yielding

a non-intersect partition C1, C2 satisfies C1 ∪ C2 = {1, 2, . . . ,m}. Let H
{C1,C2}
0 be the null hypothesis

defined as (2), we say a test of H
{C1,C2}
0 based on W controls the selective type-I error for clustering

at level α if

P
H

{C1,C2}
0

(
reject H

{C1,C2}
0 based on W at level α

∣∣∣ C1, C2 ∈ C(L(W))
)
≤ α (14)

for any α ∈ [0, 1].

However, while the proposed selective p-value (13) controls the selective type-I error, this p-value
cannot be directly calculated, because the condition C1, C2 ∈ C(L(W)) is numerically infeasible. To
elaborate, the conditional probability (13) is the probability mass function (∥L(W)C1−L(W)C2∥F ≥
∥L(w)C1 − L(w)C2∥F ) of the matrix normal distribution truncated onto the set {W ∈ Rm×n×T :
C1, C2 ∈ C(L(W))}, and directly computing this set is impossible. To handle this problem, we
propose the following orthogonal decomposition for tensor inspired by Gao et al. (2022). To begin
with, we define the indicator vector:

ν(C1, C2) :=
(
1i∈C1
|C1|

− 1i∈C2
|C2|

)
i∈[m]

,

where each coordinate of ν(C1, C2) is 1/|C1| if i ∈ C1 and 1/|C2| if i ∈ C2. Given this definition, we
can rewrite the difference of cluster means by the tensor mode product. In more detail, we have
ν(C1, C2)×1 L(W) = L(W)C1 − L(W)C2 .

Lemma 2. (Orthogonal decomposition). For any tensor A ∈ Rm×n×q and any partition of [m]
denoted by C1, C2, we have the following decomposition:

A = π⊥
ν(C1,C2) ×1 A+

(
∥ĀC1 − ĀC2∥F
1/|C1|+ 1/|C2|

)
ν(C1, C2)⊗ dir(ĀC1 − ĀC2)

⊤, (15)

where ĀCi =
∑

j∈Ci Aj,:,:/|Ci| is the mean of mode-1 slices corresponding to the partition Ci, ×1

denotes the tensor mode-1 product, π⊥
ν = I − νν⊤

∥ν∥2 is an orthogonal projection matrix, and dir(ω) =
ω

∥ω∥F 1{ω ̸=0} is the direction of ω (here ω is a matrix, ∥ω∥F is its Frobenius norm, and 1{ω ̸=0} is
the indicator function takes the value 0 when all the entries in ω are zero and takes the value 1
otherwise).

Proof. See Appendix A.5 for detailed proof.

To compute (13), which is conditional on C1, C2 ∈ C(L(W)), the orthogonal decomposition
(Lemma 2) implies that we need additional information on π⊥

ν(C1,C2) and dir(L(W)C1 − L(W)C2).
Given this intuition, we consider the following selective p-value with additional conditions on
π⊥
ν(C1,C2) and dir(L(W)C1 − L(W)C2).
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Definition 2. (Selective p-value). Suppose that W follows the model (1) and w is a realization
of W. Suppose that a specific clustering algorithm is applied on L(w), yielding a non-intersect

partition C1, C2 satisfies C1 ∪ C2 = {1, 2, . . . ,m}. Let H
{C1,C2}
0 be the null hypothesis defined as (2),

we propose the following selective p-value:

pselective = P
H

{C1,C2}
0

(
∥L(W)C1 − L(W)C2∥F ≥ ∥L(w)C1 − L(w)C2∥F

∣∣∣∣C1, C2 ∈ C(L(W)),

π⊥
ν(C1,C2) ×1 L(W) = π⊥

ν(C1,C2) ×1 L(w), dir(L(W)C1 − L(W)C2) = dir(L(w)C1 − L(w)C2)

)
,

(16)

Next, we show that the selective p-value (16) is numerically feasible. To elaborate, under

the null hypothesis H
{C1,C2}
0 , (12) implies that ∥L(W)C1 − L(W)C2∥F follows the distribution√

1/|C1|+ 1/|C2|χnq when the sample size m is large (i.e. Λ̂→ Λ when m→∞). In this case, the
following lemma shows this selective p-value is characterized by a survival function of the distribu-
tion

√
1/|C1|+ 1/|C2| · χnq truncated to a set S(w; C1, C2) ⊂ R, and it allows us to use the Monte

Carlo methods to approximate the selective p-value numerically (Section 3.4).

Lemma 3. Suppose that W follows the model (1) and w is a realization of W, then L(w) is a
realization of L(W) and the proposed selective p-value (16) can be rewritten as follows:

pselective = 1− F

(
∥L(w)C1 − L(w)C2∥F ;

√
1

|C1|
+

1

|C2|
,S(w; C1, C2)

)
, (17)

where F(t; c,S) denotes the cumulative distribution of a c ·χnq random variable truncated to the set
S defined by

S(w; C1, C2) :=

{
φ ≥ 0 : C1, C2 ∈ C

(
π⊥
ν(C1,C2) ×1 L(w) +

[
φ

1
|C1| +

1
|C2|

]
ν(C1, C2)⊗ dir(L(w)C1 − L(w)C2)

⊤

)}
.

Proof. See Appendix A.6 for detailed proof.

3.4 Numerical approximation of Selective p-value

Now we describe the procedure to calculate the selective p-value (16), which is equivalent to the
truncated survival function (17). In the following, we will use the Monte Carlo method to approx-
imate the truncation set S(w; C1, C2) and further calculate the survival function.

To begin with, we briefly talk about the intuitive explanation for S(w; C1, C2). Given a partition
C1 and C2 obtained by a certain clustering algorithm, we consider the linear transformation F :
R→ Rm×n×q:

F (φ) := π⊥
ν(C1,C2) ×1 L(w) +

[
φ

1
|C1| +

1
|C2|

]
ν(C1, C2)⊗ dir

(
L(w)C1 − L(w)C2

)⊤
. (18)

Intuitively, the transformation F operates the orthogonal projection π⊥
ν(C1,C2) ×1 L(w) along a

”vector” ν(C1, C2)⊗dir(L(w)C1 −L(w)C2)
⊤ with the length φ. And the set S(w; C1, C2) contains all
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the ”length” φ ∈ R such that the transformed tensor has the same clustering outputs as L(w) (i.e.
the partition is equal to C1, C2). Recalling Lemma 2, when φ = ∥L(w)C1 − L(w)C2∥F , we have

L(w) = π⊥
ν(C1,C2) ×1 L(w) +

[
∥L(w)C1 − L(w)C2∥F

1
|C1| +

1
|C2|

]
ν(C1, C2)⊗ dir

(
L(w)C1 − L(w)C2

)⊤
,

Therefore, we obtain ∥L(w)C1 − L(w)C2∥F ∈ S(w; C1, C2). This further implies that when φ >
S(w; C1, C2), the transformation F ”push away” the sets {L(w)[i, :, :]}i∈C1 and {L(w)[i, :, :]}i∈C2
along the vector ν(C1, C2) ⊗ dir(L(w)C1 − L(w)C2)

⊤, and vice versa. If φ is too large or small,
the sets {L(w)[i, :, :]}i∈C1 and {L(w)[i, :, :]}i∈C2 will lead to different clustering results (i.e. the
partition would not be C1, C2). As a result, elements in the set S(w; C1, C2) might concentrate near
∥L(w)C1 − L(w)C2∥F .

Monte Carlo Approximation. We use the Monte Carlo method to approximate the survival
function (17), which is the survival function of the distribution

√
1/|C1|+ 1/|C2| ·χnq truncated on

the set S(w; C1, C2). Although this set does not have a closed-form expression, we can sample some
φ ∈ R and check if φ ∈ S(w; C1, C2) to approximate this set. Mathematically, we rewrite (17) as
follows:

pselective =
P(φ ≥ ∥L(w)C1 − L(w)C2∥F , C1, C2 ∈ C(F (φ)))

P(C1, C2 ∈ C(F (φ)))
=

E[1{φ≥∥L(w)C1
−L(w)C2

∥F ,C1,C2∈C(F (φ))}]

E[1{C1,C2∈C(F (φ))}]
,

where φ follows the distribution
√
1/|C1|+ 1/|C2| · χnq, P is the corresponding probability mass

function, and E is the expectation with respect to φ.
To reduce the computational complexity, we use the importance sampling technique to approxi-

mate this conditional probability. As aforementioned, S(w; C1, C2) might concentrate near ∥L(w)C1−
L(w)C2∥F . Therefore, we Define g(x) = f1(x)/f2(x), where f1 is the density of

√
1/|C1|+ 1/|C2|·χnq

and f2 is the density function of N
(
∥L(w)C1 − L(w)C2∥F , 1/|C1|+ 1/|C2|

)
. For a positive integer

S, we sample S values γ1, . . . , γS ∼ N (∥L(w)C1−L(w)C2∥F , 1/|C1|+1/|C2|), then the approximation
of selective p-value would be:

pselective ≈

∑
πi1{γi≥∥L(w)C1

−L(w)C2
∥F ,C1,C2∈C(F (γi))}∑

πi1{C1,C2∈C(F (γi))}
, πi =

f1(γi)

f2(γi)
. (19)

Overall Procedures We summarize the three steps for computing the selective p-value as an
overall procedure in Algorithm 1. We will keep the notation as defined in the previous sections.

4 Theoretical Guarantees

In this section, we present theoretical results for the proposed selective p-value. We are going to
prove that the p-value (16) controls the selective type-I error when the covariance matrix Λ is
known (Theorem 1). Moreover, we present the asymptotic result for the statistical power of the
proposed selective inference framework. Specifically, we show that the power converges to 1 when
the sample size and the difference in clusters mean increase (Theorem 3).
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Algorithm 1: Selective inference for functional data

Step I: Low-dimensional embedding;
Input: Data of m patients W, time record Ω, basis functions {ϕs}s∈[q], regularization

term λ.
1. Compute the matrices Kij and Φij by Ω and {ϕs}s∈[q];
2. (Basis expansion regression). Xi ← (Kij + λIq)

−1ΦijWij , for i ∈ [m];
Output: Low-dimensional embedding {Xi}i∈[m].

Step II: Covariance estimation;
Input: Low-dimensional embedding {Xi}i∈[m].

3. Compute the sample covariance Λ̂ :=
∑m

i=1(vec(Xi)−vec(X̄))(vec(Xi)−vec(X̄))⊤

m−1 ;

Output: Estimated covariance matrix Λ̂.

Step III: Whitening and Clustering;

Input: Low-dimensional embedding {Xi}i∈[m], covariance matrix Λ̂.

4. (Whitening). Conduct the linear transformation vec(Yi)← (Λ̂)−
1
2vec(Xi);

5. (Clustering). Apply certain clustering algorithm on {Yi}i∈[m] and obtain a partition

C1, C2, where the number of clusters is 2.;
Output: Whitened data {Yi}i∈[m], partition C1, C2.

Step IV: Numerical approximation of the selective p-value;
Input: Whitened data {Yi}i∈[m], partition C1, C2, sampling horizon S.

for s = 1→ S do

6. Generate γs ∼
√

1
|C1| +

1
|C2| · χnq, compute πs =

f1(γs)
f2(γs)

;

7. Apply the same clustering algorithm to obtain the partition C(F (γs));

end

Output: Selective p-value

∑S
s=1 πs1{ωs≥∥ȲC1−ȲC2∥,C1,C2∈C(F (γs))}∑S

s=1 πs1{C1,C2∈C(F (γs))}
.

To begin with, we present the theoretical guarantee about the selective type-I error. Intuitively,
(17) shows that the selective p-value is a truncated continuous survival function of the distribution√
1/|C1|+ 1/|C2| ·χnq when the covariance matrix Λ is known (i.e. we use Λ to conduct the whiten

transformation). Therefore, the selective p-value would follow the uniform distribution and thus
control the selective type-I error.

Theorem 1. (Selective Type-I error control). Suppose that W follows the model (1) and the
covariance matrices are known. Suppose that w is a realization ofW, and C1, C2 is the non-intersect

partition of [m] obtained by a clustering algorithm C(·) on L(w). If the null hypothesis H
{C1,C2}
0

holds, then for all α ∈ [0, 1] and, the selective type-I error is controlled by α:

P
H

{C1,C2}
0

(
p(W; C1, C2) ≤ α

∣∣ C1, C2 ∈ C(L(W))
)
= α. (20)

Proof. The key is to prove that the selective p-value follows the uniform distribution under the
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clustering condition, namely, p(W; C1, C2)
∣∣ C1, C2 ∈ C(L(W)) ∼ Unif(0, 1). See Appendix A.1 for

detailed proof.

We remark that the statement in Theorem 1 cannot be verified by simulation efficiently because
there is a small probability of generating aW follows the model (1) that satisfies C1, C2 ∈ C(L(W)).
Next, we present an analogous theorem that can be verified by simulation studies, where we present
the numerical results in Section 5.

Theorem 2. Suppose thatW follows the model (1) and the covariance matrices are known, suppose
that CW1 , CW2 is a non-intersect partition of [m] obtained by a clustering algorithm C(·) on L(W).
Define µ̄CW

1
, µ̄CW

2
as the population means corresponding to the two clusters, then the following

property holds for all α ∈ [0, 1]:

P
(
p(W; CW1 , CW2 ) ≤ α

∣∣ µ̄CW
1

= µ̄CW
2

)
= α. (21)

Proof. See Appendix A.2 for detailed proof.

Now we present the theorem for the statistical power, we briefly talk about the intuition that

the statistical power will converge to 1 asymptotically. Under the alternative hypothesis H
{C1,C2}
1 ,

if |C1|, |C2| → ∞, |C1|/|C2| → c, and ∥µ̄C1 − µ̄C2∥F → ∞, then the low-ranking embedding (6)
satisfies ∥H(µ)C1 −H(µ)C2∥F → ∞. Recalling the covariance estimator Λ̂ defined by (9), we have

Λ̂ → Λ + c(H(µ)C1 − H(µ)C2)(H(µ)C1 − H(µ)C2)
⊤/(c + 1)2. Intuitively, combining this with the

whitening transformation (11) yields that ∥L(W)C1 − L(W)C2∥F → (c+ 1)/
√
c. Therefore, given a

realization w, the asymptotic property together with Lemma 3 indicates that the selective p-value
is 1 − F((c + 1)/

√
c;
√
1/|C1|+ 1/|C2|,S(w; C1, C2)), which converges to 1 when the sample size m

increases.

Theorem 3. (Statistical power). Suppose that W follows the model (1) and w is a realization
of W. Suppose that C1, C2 is the non-intersect partition of [m] obtained by a clustering algorithm

C(·) on L(w). If the alternative hypothesis H
{C1,C2}
1 holds, if the sample size and difference between

clusters mean increase, and the clusters are asymptotically balanced (i.e. |C1|/|C2| → c ∈ (0, 1)),
then for all α ∈ [0, 1] the statistical power of the proposed selective inference framework leveraging
(17) converges to 1:

lim
m→∞

lim
∥µ̄C1−µ̄C2∥F→∞

P
H

{C1,C2}
1

(
p(W; C1, C2) ≤ α

∣∣ C1, C2 ∈ C(L(W))
)
= 1.

Proof. See Appendix A.3 for detailed proof.

5 Simulation Studies

In this section, we conduct experiments on synthetic data to verify our theory. We check the
selective type-I error in Section 5.1 and the statistical power in Section 5.2. Next, we study the
robustness of the proposed selective inference framework in Section 5.3. Due to the page limit, we
present the basic setup and discussion of the experiments in this section, and put the figures of
experiments in Appendix B.
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5.1 Selective type-I error under a global null

In this section, we present numerical results to verify Theorem 2. To elaborate, we generate data
under a global null and compute the corresponding selective p-value.

Basic Setup. We generate a dataset containing 100 data following the model (1), where each data

contains m = 50000 patients. Namely, for all k ∈ [100] and i ∈ [m], we generate X
(k)
i = Z

(k)
i + ϵ

(k)
i

where Z
(k)
i ∼ MN (µi,Σ1,Σ2) and ϵ

(k)
i ∼ σ · MN (0, In, Iq) (here ϵi is a n × T matrix with each

entry as i.i.d. noise terms following N (0, σ2)). Specifically, we set the number of features n as 2,
and the number of total time points T as 15. Also, we set µi = 0n×T , σ

2 = 0.5, Σ1 = In, and set
Σ2 as the covariance matrix of a certain kernel K (i.e. Σ2 = (K(i/T, j/T ))i,j∈[T ]). To elaborate,
we conduct the simulation for three different kernels: the rational quadratic kernel, period kernel,
and truncated local period kernel:

(i) Rational quadratic kernel.

K(x, y) =

(
1 +

(x− y)2

ℓ2

)−1/2

.

(ii) Period kernel.

K(x, y) = e−8 sin2(2π|x−y|).

(iii) Truncated local period kernel.

K(x, y) = 1{1/3<|x−y|<2/3} · e−8 sin2(2π|x−y|)e−2(x−y)2 + 1{|x−y|≤1/3 or |x−y|≥2/3} · 0.01.

Next, we set the basis functions {ϕs}s∈[q] as the eigenfunctions of the Gaussian RBF (Radial Basis

Function) kernel K(x, y) = e
− ρ

1−ρ2
(x−y)2

where ρ ∈ (0, 1). By the Mercer expansion (Fasshauer and
McCourt, 2012), the i-th eigenfunction is

ϕi(x) =
1√
Ni

Hi(x)e
− ρ

1+ρ
x2

, (22)

here Ni = 2ii!
√

1−ρ
1+ρ and Hi(x) is the i-th order physicist’s Hermite polynomial. In this experiment,

we set ρ = 0.99 and set the truncation number q as 3, namely, we use the first three eigenfunctions
to conduct the low-dimensional embedding.

Next, we apply the proposed selective inference framework to the generated datasets. Figure 4
shows quantile plots of the selective p-value for datasets corresponding to the aforementioned three
kernels, it shows that the selective p-value follows the uniform distribution under the global null
hypothesis, which validates the statement of Theorem 2.

5.2 Statistical Power

In this section, we present the numerical results to verify Theorem 3. In more detail, we generate
datasets following the model (1) under the alternative hypothesis and compute the corresponding
statistical power. To verify Theorem 3, we compute the selective p-value with respect to datasets
generated by different cluster mean ∥µ̄C1 − µ̄C2∥F and sample size m.
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To check the statistical power with respect to different sample sizes, we consider the sample size
as m = 10 · k where k ∈ {3, 4, . . . , 10}. Set n = 1, T = 15, σ2 = 0.1, and Σ1 = In, for each sample
size m, we generate a dataset containing m record following a model of alternative hypothesis:
µi = (−10)n×T for i ≤ m/2 and µi = (10)n×T for i > m/2. We use the same basis (22) with the
parameter q = 3 to conduct the low-dimensional embedding. Figure 5(b) presents the statistical
power with the same mean and increasing sample sizes, it shows that the statistical power increases
as the sample sizes increase.

To check the statistical power with respect to different cluster means, we set the sample size
as m = 60 and the other parameters are the same as in the previous paragraph.For each k ∈
{0.3, 0.4, . . . , 1}, we generate a dataset with m records following the sample means µi = (k)n×T for
i ≤ m/2 and µi = (−k)n×T for i > m/2. Figure 5(c) presents the statistical power with the same
sample size and the increasing difference between cluster means, it shows that the statistical power
increases as the difference between cluster means increases.

5.3 Empirical Robustness Analysis

Robustness to missing values. We consider the practical situations, where there are missing
values on observed records. To elaborate, we set n = 1, T = 15, σ2 = 0.1,Σ1 = In, and m = 100.
For three kernels described in Section 5.1, we generate 100 datasets under the global null and
randomly drop 50% points for each record as the missing values. We set q = 3 and use the same
basis (22) to compute the p-value by the proposed selective inference framework. Figure 6 shows
the results for these three kernels, where the left column presents the first 5 records and the right
column presents the QQ-plot of the selective p-value. We find that Figures 6(b), 6(d) are close to
the uniform QQ-line and Figure 6(f) is slightly deviate. This implies that the selective p-value is
robust to missing values in general.

Robustness to misspecification. We consider the specification cases and compute the selective
p-value under a global null. In more detail, we consider three misspecification cases: Brown motion
(Figure 7(a)), uniform random walk (Figure 7(c)), and Poisson process (Figure 7(e)). We present
the QQ-plot of the selective p-value in Appendix B.

6 Phenotyping of Acute Kidney Injury (AKI) based on EHR

Now we present a real-data application of our selective inference framework. Acute Kidney Injury
(AKI) is a common clinical syndrome, which is notably complex in its treatment process and fre-
quently leads to high mortality rates and adverse outcomes. The pathology of AKI is characterized
by a high degree of heterogeneity, posing significant challenges to the formulation of treatment
plans. Consequently, the identification of new AKI subtypes is crucial. The severity of disease
in AKI patients tends to vary over time, making the problem of hypothesis testing for functional
disease subtypes of significant practical importance.

In this section, we used the MIMIC-IV EHR dataset from PhysioNet Johnson et al. (2020,
2023); Goldberger et al. (2000), which encompasses deidentified medical data, encompasses in-
formation on in excess of 40,000 patients who were admitted to the Intensive Care Units (ICU)
at Beth Israel Deaconess Medical Center from 2008 to 2019. The database provides information
from various angles, including vital signs, medications, laboratory measurements, diagnostic codes,
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and hospital length of stay. Spanning over a decade, this dataset is rich in individual patient-level
information and is freely accessible, making it feasible for clinical research worldwide. Examples in-
clude identifying disease subtypes, predicting patient outcomes, and exploring effective therapeutic
measures.

To avoid systemic bias, we only used data from patients with AKI admitted to the ICU. Initially,
we preprocessed the data based on the framework provided by Song et al. (2020), excluding patients
with: 1) End Stage Renal Disease, 2) Burns, 3) Renal Dialysis. Subsequently, according to the
clinical practice guidelines for Acute Kidney Injury designated by Kidney Disease Improving Global
Outcomes (KDIGO), we defined three subtypes of AKI as follows Khwaja (2012):

• Stage-1 AKI: Serum Creatinine (SCr) value rises to 1.5-1.9 times the baseline value within 7
days.

• Stage-2 AKI: SCr value rises to 2.0-2.9 times the baseline value within 7 days.

• Stage-3 AKI: SCr value rises to 3 times the baseline value or more within 7 days or the
maximum SCr value over 2 days is greater than 4.0mg/dl.
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Figure 3: a. Real trajectories for 100 randomly selected patients from each category. b.
Trajectories (Mean ± 1.96× standard deviation/

√
sample size) of the four AKI subtypes.

Here we define the SCr baseline value as the earliest recorded value for the patient. Consid-
ering the heterogeneity in the definition of ”Stage-3 AKI”, we separated the first criterion (using
growth rate as an indicator) and the second criterion (using absolute value as an indicator) since
their longitudinal data shapes are likely different. For a clear presentation of the analysis results,
we named Stage-1 AKI as ”S1”, Stage-2 AKI as ”S2”, the first criterion of Stage-3 AKI as ”S3”,
and the second criterion as ”S4”.The specific shape of this longitudinal data is shown in Figure 3.
We then used hierarchical clustering based on squared Euclidean distance to cluster each category
combination, specifying the number of clusters as 2. In this clustering scenario, we compared the

p-values under two distinct test methods. The first is the test (2), i.e., H
{C1,C2}
0 : µ̄C1 = µ̄C2 . The

second method we considered is the Wald test method.
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“No clusters” “Clusters”

Cluster pairs S1 S2 S3 S4 (S1, S4) (S2, S4) (S3, S4)

Our p-value 0.19253 0.18459 0.89726 0.53099 0.00868 0.16164 0.54320
Wald p-value < 10−307 < 10−307 < 10−307 < 10−307 < 10−307 < 10−307 < 10−307

Table 1: Comparison of p-values under different clustering scenarios.

As evident from Table 1, in the ”No clusters” scenario, the p-values from our test are relatively
high, while those from the Wald test are notably low. This elevated p-value in our approach
correctly refrains from rejecting the null hypothesis. Given that, in the ”No clusters” scenario,
we individually clustered and tested the four subtypes which, in reality, all belong to the same
category, it implies that our method successfully identified the inherent homogeneity among these
subtypes. In contrast, the Wald test, with its low p-values, could mislead researchers into believing
that these subtypes are distinct, suggesting that the Wald test may not be as reliable in this specific
context.

In the ”Clusters” scenario, the p-value for the combination of S1 and S4 is notably low. This
correctly identifies the heterogeneity of this combined class. Clinically, considering the AKI defi-
nitions, S1 and S4 present significant differences in both shape and mean, making the rejection of
the null hypothesis appropriate.

Examining the combination of S2 and S4, we observe that its p-value is the second smallest.
Although it is not sufficiently low to decisively reject the null hypothesis, this may be attributed
to the inherent heterogeneity of S2 itself (as evidenced by its standalone p-value of 0.1846, which
is notably smaller than the other three classes). However, it’s noteworthy that this p-value is still
lower than in the ”No clusters” scenario, indicating a certain degree of heterogeneity between S2
and S4.

Lastly, for the combination of S3 and S4, the corresponding p-value is relatively high, suggesting
that S3 and S4 likely represent the same subtype. This is consistent with clinical understanding,
since both S3 and S4 are classified as Stage-3 AKI. Many individuals meet the criteria for both
classifications simultaneously, resulting in minimal inter-individual longitudinal data variation, not
significant enough to classify them as distinct subtypes.
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A Additional Proofs

A.1 Proof of Theorem 1

To begin with, for a realization w of the model (1) and the corresponding partition C1, C2 obtain by a
clustering algorithm on L(w). For any α ∈ [0, 1], we consider the following conditional probability:

P
H

{C1,C2}
0

(
p(W; C1, C2) ≤ α

∣∣∣∣C1, C2 ∈ C(L(W)), π⊥
ν(C1,C2) ×1 L(W) = π⊥

ν(C1,C2) ×1 L(w),

dir(L(W)C1 − L(W)C2) = dir(L(w)C1 − L(w)C2)

) (23)

Recalling the definition of the selective p-value (16) and its equivalent form (17). Given the partition
C1, C2 and any realization W of the model (1) satisfies C1, C2 ∈ C(L(W)), we have

p(W; C1, C2) = 1− F

(
∥L(W)C1 − L(W)C2∥F ;

√
1

|C1|
+

1

|C2|
,S(W; C1, C2)

)
.

Given this equation, we rewrite (23) as follows:

P
H

{C1,C2}
0

(
1− F

(
∥L(W)C1 − L(W)C2∥F ;

√
1

|C1|
+

1

|C2|
,S(W; C1, C2)

)
≤ α

∣∣∣∣C1, C2 ∈ C(L(W)),

π⊥
ν(C1,C2) ×1 L(W) = π⊥

ν(C1,C2) ×1 L(w),dir(L(W)C1 − L(W)C2) = dir(L(w)C1 − L(w)C2)

)
(24)

Given the conditions π⊥
ν(C1,C2) ×1 L(W) = π⊥

ν(C1,C2) ×1 L(w), dir(L(W)C1 −L(W)C2) = dir(L(w)C1 −
L(w)C2), the two sets S(W; C1, C2) and S(w; C1, C2) are equivalent:

S(W; C1, C2) =

{
φ ≥ 0 : C1, C2 ∈ C

(
π⊥
ν(C1,C2) ×1 L(W) +

[
φ

1
|C1| +

1
|C2|

]
ν(C1, C2)⊗ dir(L(W)C1 − L(W)C2)

⊤

)}

=

{
φ ≥ 0 : C1, C2 ∈ C

(
π⊥
ν(C1,C2) ×1 L(w) +

[
φ

1
|C1| +

1
|C2|

]
ν(C1, C2)⊗ dir(L(w)C1 − L(w)C2)

⊤

)}
= S(w; C1, C2).
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Moreover, the random variable ∥L(W)C1 − L(W)C2∥F is independent of π⊥
ν(C1,C2) ×1 L(W) and

dir(L(w)C1 − L(w)C2). Therefore, the conditional probability (24) is equal to

P
H

{C1,C2}
0

(
1− F

(
∥L(W)C1 − L(W)C2∥F ;

√
1

|C1|
+

1

|C2|
,S(w; C1, C2)

)
≤ α

∣∣∣∣C1, C2 ∈ C(π⊥
ν(C1,C2) ×1 L(w)+[

∥L(W)C1 − L(W)C2∥F
1/|C1|+ 1/|C2|

]
ν(C1, C2)⊗ dir(L(w)C1 − L(w)C2)

⊤
)
, π⊥

ν(C1,C2) ×1 L(W) = π⊥
ν(C1,C2) ×1 L(w),

dir(L(W)C1 − L(W)C2) = dir(L(w)C1 − L(w)C2)

)
=P

H
{C1,C2}
0

(
1− F

(
∥L(W)C1 − L(W)C2∥F ;

√
1

|C1|
+

1

|C2|
,S(w; C1, C2)

)
≤ α

∣∣∣∣C1, C2 ∈ C(π⊥
ν(C1,C2) ×1 L(w)+[

∥L(W)C1 − L(W)C2∥F
1/|C1|+ 1/|C2|

]
ν(C1, C2)⊗ dir(L(w)C1 − L(w)C2)

⊤
))

=P
H

{C1,C2}
0

(
1− F

(
∥L(W)C1 − L(W)C2∥F ;

√
1

|C1|
+

1

|C2|
,S(w; C1, C2)

)
≤ α

∣∣∣∣∥L(W)C1 − L(W)C2∥F ∈ S(w; C1, C2)
)
.

(25)
Therefore, (25) indicates that the conditional probability (23) is the survival function of the trun-
cated

√
1/|C1|+ 1/|C2| · χnq distribution. Namely, we have

P
H

{C1,C2}
0

(
p(W; C1, C2) ≤ α

∣∣∣∣C1, C2 ∈ C(L(W)), π⊥
ν(C1,C2) ×1 L(W) = π⊥

ν(C1,C2) ×1 L(w),

dir(L(W)C1 − L(W)C2) = dir(L(w)C1 − L(w)C2)

)
= α.

(26)

Now we use (26) to compute the selective p-value. By the law of iterated expectation, we rewrite
the selective type-I error as follows:

P
H

{C1,C2}
0

(
p(W; C1, C2) ≤ α

∣∣ C1, C2 ∈ C(L(W))
)
= E

H
{C1,C2}
0

(
1p(W;C1,C2)≤α

∣∣ C1, C2 ∈ C(L(W))
)

= E
H

{C1,C2}
0

(
E
[
1p(W;C1,C2)≤α

∣∣C1, C2 ∈ C(L(W)), π⊥
ν(C1,C2) ×1 L(W) = π⊥

ν(C1,C2) ×1 L(w),

dir(L(W)C1 − L(W)C2) = dir(L(w)C1 − L(w)C2)
]∣∣ C1, C2 ∈ C(L(W))

)
.

Plugging in (26), we obtain

P
H

{C1,C2}
0

(
p(W; C1, C2) ≤ α

∣∣ C1, C2 ∈ C(L(W))
)

= E
H

{C1,C2}
0

(
α
∣∣ C1, C2 ∈ C(L(W))

)
= α.
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A.2 Proof of Theorem 2

By the Bayes rule, we rewrite the conditional probability P
(
p(W; CW1 , CW2 ) ≤ α

∣∣ µ̄CW
1

= µ̄CW
2

)
as

follows:

P
(
p(W; CW1 , CW2 ) ≤ α

∣∣ µ̄CW
1

= µ̄CW
2

)
= P

(
p(W; CW1 , CW2 ) ≤ α, µ̄CW

1
= µ̄CW

2

)
/P(µ̄CW

1
= µ̄CW

2
).

(27)
We notice that µ̄CW

1
= µ̄CW

2
can be rewritten as follows:

C(L(W)) = {C1, C2}, µ̄C1 = µ̄C2 .

Therefore, we decompose P
(
p(W; CW1 , CW2 ) ≤ α, µ̄CW

1
= µ̄CW

2

)
into the sum of non-intersect parti-

tion C1, C2. Namely, the probability can be rewritten as follows:

P
(
p(W; CW1 , CW2 ) ≤ α, µ̄CW

1
= µ̄CW

2

)
=

∑
C1∪C2=[m],
µ̄C1=µ̄C2

P (p(W; C1, C2) ≤ α, C(L(W)) = {C1, C2}) .

By the Bayes rule, the above equality implies that

P
(
p(W; CW1 , CW2 ) ≤ α, µ̄CW

1
= µ̄CW

2

)
=

∑
C1∪C2=[m],
µ̄C1=µ̄C2

P
(
p(W; C1, C2) ≤ α

∣∣C(L(W)) = {C1, C2}
)
· P(C(L(W)) = {C1, C2}).

Theorem 1 implies that P
(
p(W; C1, C2) ≤ α

∣∣C(L(W)) = {C1, C2}
)

= α for any partition C1, C2.
Thus, we plug in this result and obtain that

P
(
p(W; CW1 , CW2 ) ≤ α, µ̄CW

1
= µ̄CW

2

)
= α ·

∑
C1∪C2=[m],
µ̄C1=µ̄C2

P(C(L(W)) = {C1, C2})

= α · P(µ̄CW
1

= µ̄CW
2
).

Combining this equation with (27) directly yields (11) and complete the proof.

A.3 Proof of Theorem 3

To begin with, recall (17), we rewrite the survival function F(·) as follows:

F

(
∥L(w)C1 − L(w)C2∥F ;

√
1

|C1|
+

1

|C2|
,S(w; C1, C2)

)
= P

(
φ ≥ ∥L(w)C1 − L(w)C2∥F

∣∣φ ∈ S(w; C1, C2)) ,
(28)

where φ follows the distribution
√
1/|C1|+ 1/|C2| · χnq.

Next, we study the asymptotic behaviour of ∥L(W)C1 − L(W)C2∥F under the alternative hy-
pothesis when ∥µ̄C1 − µ̄C2∥F → ∞ and m → ∞. Recall the low-dimensional embedding (6) and
Lemma 1, we obtain that

∥H(µ)C1 −H(µ)C2∥F = ∥(µC1 − µC2)Φ
⊤(K + λIq)

−1∥F →∞,
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where K and Φ are defined in Lemma 1. Recall the covariance estimator Λ̂ defined by (9), we have
Λ̂→ Λ+c(H(µ)C1−H(µ)C2)(H(µ)C1−H(µ)C2)

⊤/(c+1)2. Therefore, the whitening transformation
(11) implies that

∥L(W)C1 − L(W)C2∥F = ∥Λ̂−1/2 · vec(H(W)C1 −H(W)C2)∥F → (c+ 1)/
√
c.

Therefore, a proper clustering algorithm would output the labels corresponding to the partition
C1 and C2, namely, P(C1, C2 ∈ C(L(W))) → 1. Moreover, recall the selective p-value (17), which
is the survival function of the distribution

√
1/|C1|+ 1/|C2| · χnq truncated to the set S(w; C1, C2).

Recall that S(w; C1, C2) is comprised of all the φ ≥ 0 that have the same clustering output C1, C2
on the perturbed data F (φ) defined in (18). Since ∥L(W)C1 − L(W)C2∥F equals to (c + 1)/

√
c

asymptotically, S(w; C1, C2) concentrates near (c + 1)/
√
c. As a result, any γi ∈ N (∥L(w)C1 −

L(w)C2∥F , 1/|C1|+1/|C2|) generated by the importance sampling step (19) are close to (c+1)/
√
c,

which further induces that C(F (γi)) = C1, C2. The above asymptotic analysis shows that

P
(
φ ≥ ∥L(w)C1 − L(w)C2∥F

∣∣φ ∈ S(w; C1, C2))→ P
(
φ ≥ (c+ 1)/

√
c
)
= 0,

the last inequality holds because φ ∼
√
1/|C1|+ 1/|C2| · χnq and 1/|C1| + 1/|C2| → 0. Using the

above equality, we finally obtain that

lim
m→∞

lim
∥µ̄C1−µ̄C2∥F→∞

P
H

{C1,C2}
1

(
p(W; C1, C2) ≤ α

∣∣ C1, C2 ∈ C(L(W))
)

= 1− lim
m→∞

lim
∥µ̄C1−µ̄C2∥F→∞

F

(
∥L(w)C1 − L(w)C2∥F ;

√
1

|C1|
+

1

|C2|
,S(w; C1, C2)

)
= 1.

A.4 Proof of Lemma 1

Recalling Assumption 1, where vec(Wi) ∼ N (vec(µi),Σ2 ⊗Σ1 + IT ⊗ diag(σ2
j )j∈[n]). Given (6), we

have
H(W)[i, :, :] = WiΦ

⊤(K + λIq)
−1.

Therefore, by the property of the vectorization operator that vec(AXB) = (B⊤ ⊗ A)vec(X), we
have

vec(H(W)[i, :, :]) = vec(WiΦ
⊤(K + λIq)

−1) = (((K + λIq)
−1Φ)⊗ In)vec(Wi),

This further implies that vec(H(W)[i, :, :]) follows the multivariate normal distribution

N ((((K + λIq)
−1Φ)⊗ In)vec(µi), (((K + λIq)

−1Φ)⊗ In)(Σ2 ⊗ Σ1)(((K + λIq)
−1Φ)⊗ In)

⊤)

+N (0, (((K + λIq)
−1Φ)⊗ In)(IT ⊗ diag(σ2

j )j∈[n])(((K + λIq)
−1Φ)⊗ In)

⊤)

= N ((((K + λIq)
−1Φ)⊗ In)vec(µi),

[
(K + λIq)

−1ΦΣ2Φ
⊤(K + λIq)

−1
]
⊗ Σ1)

+N (0,
[
(K + λIq)

−1K(K + λIq)
−1
]
⊗ diag(σ2

j )j∈[n]),

which directly implies (7).
If W is a realization of the model (1) with missing values, the vectorization of Wi follows the

marginal distribution of the above normal distribution, namely, it follows a normal distribution
corresponds with the time record Ωi:

vec(Wi) ∼ N (vec((µΩi
ij )j∈[n]),

[
Σ2 ⊗ Σ1 + IT ⊗ diag(σ2

j )j∈[n]
]Ωi),
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where
[
Σ2 ⊗ Σ1 + IT ⊗ diag(σ2

j )j∈[n]

]Ωi

∈ R(
∑n

j=1 rij)×(
∑n

j=1 rij) is the submatrix of Σ2 ⊗Σ1 + IT ⊗
diag(σ2

j )j∈[n] that characterized by the time record Ωi. Moreover, since H(W)i,j,: = WijΦ
⊤
ij(Kij +

λIq)
−1, we have H(W)[i, :, :] = (WijΦ

⊤
ij(Kij + λIq)

−1)j∈[n]. Therefore, we have

vec(H(W)[i, :, :]) = diag((Kij + λIq)
−1Φij)j∈[n]vec(Wi),

which further yields (8).

A.5 Proof of Lemma 2

To begin with, we have
A = π⊥

ν(C1,C2) ×1 A+ (I − π⊥
ν(C1,C2))×1 A.

By the definition of π⊥
ν(C1,C2), we have I−π

⊥
ν(C1,C2) = ν(C1, C2)ν(C1, C2)⊤/∥ν(C1, C2)∥2 and ∥ν(C1, C2)∥2 =

1/|C1|+ 1/|C2|. As a result, we can rewrite the second term in the above equation as follows:

(I − π⊥
ν(C1,C2))×1 A =

ν(C1, C2)ν(C1, C2)⊤

1/|C1|+ 1/|C2|
×1 A

=
ν(C1, C2)

1/|C1|+ 1/|C2|
⊗ (ĀC1 − ĀC2)

⊤,

(29)

where the last equation holds by the property of tensor mode product. The equation (29) further
leads to (15) and finishes the proof.

A.6 Proof of Lemma 3

Combine the definition (16) with the orthogonal decomposition (15), we have

pselective = P
H

{C1,C2}
0

(
∥L(W)C1 − L(W)C2∥F ≥ ∥L(w)C1 − L(w)C2∥F

∣∣∣∣C1, C2 ∈ C(π⊥
ν(C1,C2) ×1 L(W)+[

∥L(W)C1 − L(W)C2∥F
1/|C1|+ 1/|C2|

]
ν(C1, C2)⊗ dir(L(W)C1 − L(W)C2)

⊤
)
, π⊥

ν(C1,C2) ×1 L(W) = π⊥
ν(C1,C2) ×1 L(w),

dir(L(W)C1 − L(W)C2) = dir(L(w)C1 − L(w)C2)

)
= P

H
{C1,C2}
0

(
∥L(W)C1 − L(W)C2∥F ≥ ∥L(w)C1 − L(w)C2∥F

∣∣∣∣C1, C2 ∈ C(π⊥
ν(C1,C2) ×1 L(w)+[

∥L(W)C1 − L(W)C2∥F
1/|C1|+ 1/|C2|

]
ν(C1, C2)⊗ dir(L(w)C1 − L(w)C2)

⊤
)
, π⊥

ν(C1,C2) ×1 L(W) = π⊥
ν(C1,C2) ×1 L(w),

dir(L(W)C1 − L(W)C2) = dir(L(w)C1 − L(w)C2)

)
.

Next, we show that ∥L(W)C1 − L(W)C2∥F is independent of π⊥
ν(C1,C2) ×1 L(W) and dir(L(W)C1 −

L(W)C2). To begin with, we remark that vec(π⊥
ν(C1,C2) ×1 L(W)) = (Iq ⊗ π⊥

ν(C1,C2))vec(L(W)),

where (Iq ⊗ π⊥
ν(C1,C2)) is the orthogonal projection matrix that projects vec(L(W)) onto a subspace
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orthogonal to Iq ⊗ ν(C1, C2). It follows from the properties of the multivariate normal distribu-
tions that (Iq ⊗ π⊥

ν(C1,C2))vec(L(W)) is independent to (Iq ⊗ ν(C1, C2))vec(L(W)), which is equiv-

alent to the statement that vec(π⊥
ν(C1,C2)⊤ ×1 L(W)) is independent to vec(ν(C1, C2)⊤ ×1 L(W)) =

vec(L(W)C1 − L(W)C2). Besides, we notice that vec(L(W)[i, :, :]) ∼ N (vec(L(µi)), Inq), which im-

plies that vec(L(W)C1 − L(W)C2) follows the scaled standard normal distribution N (0, (1/|C1| +
1/|C2|)Inq). As a result, the independence of the length and direction of a standard multivariate

distribution implies that vec(L(W)C1 − L(W)C2) is independent to dir(vec(L(W)C1 − L(W)C2)) =

vec(dir(L(W)C1 − L(W)C2)).

Thus, ∥L(W)C1 − L(W)C2∥F is independent of π⊥
ν(C1,C2) ×1 L(W) and dir(L(W)C1 − L(W)C2),

which implies that

pselective = P
H

{C1,C2}
0

(
∥L(W)C1 − L(W)C2∥F ≥ ∥L(w)C1 − L(w)C2∥F

∣∣∣∣C1, C2 ∈ C(π⊥
ν(C1,C2) ×1 L(w)

+

[
∥L(W)C1 − L(W)C2∥F

1/|C1|+ 1/|C2|

]
ν(C1, C2)⊗ dir(L(w)C1 − L(w)C2)

⊤
))

.

Define φ = ∥L(W)C1 − L(W)C2∥F and the set S(w, C1, C2) = {φ ≥ 0 : C1, C2 ∈ C(π⊥
ν(C1,C2) ×1

L(w)+(φ/(1/|C1|+ 1/|C2|)) ν(C1, C2)⊗dir(L(w)C1 −L(w)C2)
⊤)}, the selective p-value has the form

pselective = P
H

{C1,C2}
0

(φ ≥ ∥L(w)C1 − L(w)C2∥F |C1, C2 ∈ S(w, C1, C2)). Finally, since φ = ∥L(W)C1 −

L(W)C2∥F and cov(vec(L(W)[i, :, :])) = Inq, the random variable φ follows the χnq distribution and
thus finishes the proof.

B Supplementary Figures

In this section, we present the auxiliary figures for both numerical simulation and EHR-dataset
application in Section 5 and Section 6.
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Q-Q plot of the selective p-value under the global null
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Figure 4: Left column: Records of the first feature and the first 5 patients for the dataset generated
with 15 time points. Right column: Quantile plots of the selective p-value for the corresponding
kernel with 100 generated datasets, where (b) is the result of RQ Kernel, (d) is the result of PE
Kernel, and (f) is the result of LPE Kernel.
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Statistical Power
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Figure 5: (a): Example of the dataset generated under H
{C1,C2}
1 with 15 time points and sample

size m = 60, where sample means are µi = (1.1)n×T for i ≤ 50 and µi = (−1.1)n×T for i > 50. (b):
Statistical power with sample size m ∈ {30, 40, · · · , 100}, where sample means are µi = (10)n×T

for i ≤ m/2 and µi = (−10)n×T for i > m/2. (c): Statistical power with sample size m = 60 and
sample means µi = (k)n×T for i ≤ m/2 and µi = (−k)n×T for i > m/2, where k ∈ {0.3, 0.4, · · · , 1}.
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Q-Q plot of the selective p-value under the global null with missing values
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Figure 6: Left column: Records of the first feature of the first 5 patients for the generated
dataset with 15 time points, we randomly drop 50% data points as missing values. Right column:
Quantile plots of the selective p-value for the corresponding kernel with 100 generated datasets,
where (b) is the result of RQ Kernel, (d) is the result of PE Kernel, and (f) is the result of
LPE Kernel.
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Q-Q plot of the selective p-value under global null (misspecification cases)
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Figure 7: Left column: Records of the first feature of the first 5 patients for the dataset generated
with 15. Right column: quantile plots of the selective p-value. (a): Each record is generated
independently under the Brownian motion. (c): Each record is generated independently under the
uniform random walk. (e): Each record is generated independently under the Poisson process.
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